R语言使用group_by和summarise统计

> library(nycflights13)
> library(tidyverse)
> rt <- read.table("text.txt",header = T,sep = "\t")
> myda <- group_by(rt,Tumor_Sample) #如果要求和谁,就group_by谁
> realdata <- summarise(myda,naw=sum(score))
> realdata
# A tibble: 491 x 2
   Tumor_Sample    naw
   <fct>         <dbl>
 1 TCGA-18-3406   95.7
 2 TCGA-18-3407   31.1
 3 TCGA-18-3408   36.9
 4 TCGA-18-3409 1447. 
 5 TCGA-18-3410  110. 
 6 TCGA-18-3411  151. 
 7 TCGA-18-3412   53.0
 8 TCGA-18-3414  171. 
 9 TCGA-18-3415   93.0
10 TCGA-18-3416  135. 
# ... with 481 more rows
> daily <- group_by(flights, year, month, day)
> daily
# A tibble: 336,776 x 19
# Groups:   year, month, day [365]
    year month   day dep_time sched_dep_time dep_delay arr_time sched_arr_time arr_delay carrier flight tailnum origin
   <int> <int> <int>    <int>          <int>     <dbl>    <int>          <int>     <dbl> <chr>    <int> <chr>   <chr> 
 1  2013     1     1      517            515         2      830            819        11 UA        1545 N14228  EWR   
 2  2013     1     1      533            529         4      850            830        20 UA        1714 N24211  LGA   
 3  2013     1     1      542            540         2      923            850        33 AA        1141 N619AA  JFK   
 4  2013     1     1      544            545        -1     1004           1022       -18 B6         725 N804JB  JFK   
 5  2013     1     1      554            600        -6      812            837       -25 DL         461 N668DN  LGA   
 6  2013     1     1      554            558        -4      740            728        12 UA        1696 N39463  EWR   
 7  2013     1     1      555            600        -5      913            854        19 B6         507 N516JB  EWR   
 8  2013     1     1      557            600        -3      709            723       -14 EV        5708 N829AS  LGA   
 9  2013     1     1      557            600        -3      838            846        -8 B6          79 N593JB  JFK   
10  2013     1     1      558            600        -2      753            745         8 AA         301 N3ALAA  LGA   
# ... with 336,766 more rows, and 6 more variables: dest <chr>, air_time <dbl>, distance <dbl>, hour <dbl>, minute <dbl>,
#   time_hour <dttm>
> (per_day   <- summarise(daily, flights = n()))
# A tibble: 365 x 4
# Groups:   year, month [?]
    year month   day flights
   <int> <int> <int>   <int>
 1  2013     1     1     842
 2  2013     1     2     943
 3  2013     1     3     914
 4  2013     1     4     915
 5  2013     1     5     720
 6  2013     1     6     832
 7  2013     1     7     933
 8  2013     1     8     899
 9  2013     1     9     902
10  2013     1    10     932
# ... with 355 more rows
> (per_month <- summarise(per_day, flights = sum(flights)))
# A tibble: 12 x 3
# Groups:   year [?]
    year month flights
   <int> <int>   <int>
 1  2013     1   27004
 2  2013     2   24951
 3  2013     3   28834
 4  2013     4   28330
 5  2013     5   28796
 6  2013     6   28243
 7  2013     7   29425
 8  2013     8   29327
 9  2013     9   27574
10  2013    10   28889
11  2013    11   27268
12  2013    12   28135
> myda <- group_by(flights,year,month) %>%
+   summarise(flights = n())
> myda
# A tibble: 12 x 3
# Groups:   year [?]
    year month flights
   <int> <int>   <int>
 1  2013     1   27004
 2  2013     2   24951
 3  2013     3   28834
 4  2013     4   28330
 5  2013     5   28796
 6  2013     6   28243
 7  2013     7   29425
 8  2013     8   29327
 9  2013     9   27574
10  2013    10   28889
11  2013    11   27268
12  2013    12   28135
> myda==per_month
      year month flights
 [1,] TRUE  TRUE    TRUE
 [2,] TRUE  TRUE    TRUE
 [3,] TRUE  TRUE    TRUE
 [4,] TRUE  TRUE    TRUE
 [5,] TRUE  TRUE    TRUE
 [6,] TRUE  TRUE    TRUE
 [7,] TRUE  TRUE    TRUE
 [8,] TRUE  TRUE    TRUE
 [9,] TRUE  TRUE    TRUE
[10,] TRUE  TRUE    TRUE
[11,] TRUE  TRUE    TRUE
[12,] TRUE  TRUE    TRUE

> daily %>% 
+   ungroup() %>%             # no longer grouped by date
+   summarise(flights = n())  # all flights
# A tibble: 1 x 1
  flights
    <int>
1  336776
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 211,348评论 6 491
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,122评论 2 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 156,936评论 0 347
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,427评论 1 283
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,467评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,785评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,931评论 3 406
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,696评论 0 266
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,141评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,483评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,625评论 1 340
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,291评论 4 329
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,892评论 3 312
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,741评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,977评论 1 265
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,324评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,492评论 2 348

推荐阅读更多精彩内容

  • 外盘美原油弱势横盘震荡,国内商品上周五强势反弹,有色金属和黑色钢材强势上涨化工品也强势追机,上周五除了盘中提示继续...
    千途点金阅读 181评论 0 0
  • 夕阳西下,八戒又开始相思之苦。 相思够了,来到躺着孙悟空的树干之下,问道:猴哥,你这辈子有没有放不下的女人呀? 没...
    弟白阅读 897评论 0 0
  • 罗书萍焦点网络四期 周口项城 坚持分享第459天2018.06.09周六 第27次约练感悟 28次约练感悟 1.好...
    L次第花开阅读 226评论 0 0
  • 做自己嘛?吃亏的是自己哦。 丰富了精神却辜负了物质。
    疏瘦阅读 185评论 0 0