05 决策树 - 生成算法 ID3、C4.5、CART

ID3 提出了初步的决策树算法;
C4.5 提出了完整的决策树算法;
CART (Classification And Regression Tree) 目前使用最多的决策树算法;

一、ID3 算法

ID3 算法是决策树的经典构造算法,内部使用信息熵信息增益来进行构建,每次迭代算则信息增益最大的特征属性作为分割属性。

优点:
决策树构建速度快,实现简单。

缺点:
计算依赖于特征数目较多的特征,而属性值最多的属性并不一定最优。
ID3算法不是递增算法。
ID3算法是单变量决策树,对于特征属性之间的关系不会考虑。
抗噪性差。数据集中噪音点多可能会出现过拟合。
只适合小规模的数据集,需要将数据放到内存中。

思考: 树形结构能否并行计算?

二、C4.5 算法

C4.5 算法是在ID3算法上的优化。使用信息增益率来取代ID3中的信息增益,在树的构造过程中会进行剪枝操作进行优化,能够自动完成对连续属性的离散化处理。

ID3当时构建的时候就没有去考虑连续值这个问题。

C4.5 算法在选中分割属性的时候选择信息增益率大的属性,公式如下:

优点:
产生规则易于理解。
准确率较高。(因为考虑了连续值,数据越多拟合程度就越好。)
实现简单。

缺点:
对数据集需要进行多次扫描和排序,所以效率较低。(比如之前例子中收入的连续值,分割次数越多,需要扫描的次数也就越多,排序次数也越多。)
只适合小规模数据集,需要将数据放到内存中。

三、CART算法

使用基尼系数 Gain作为数据纯度的量化指标来构建决策树算法,叫做CART算法。

GINI增益 作为分割属性选择的标准,选择GINI增益最大的作为当前数据集分割属性。可以用于分类和回归两类问题。

注意: CART构建的是二叉树。

四、总结

1、ID3和C4.5算法只适合小规模数据集上使用。
2、ID3和C4.5算法都是单变量决策树。
3、当属性值比较多的时候请使用C4.5。
4、决策树分类一般情况只适合小数据量的情况(数据可以放内存)
5、CART算法是最常用的一种决策树构建算法。
6、三种算法的区别只是对于当前树的评价标准不同而已,ID3使用信息增益,C4.5使用信息增益率,CART使用基尼系数
7、CART算法构建的一定是二叉树。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,997评论 6 502
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,603评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 163,359评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,309评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,346评论 6 390
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,258评论 1 300
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,122评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,970评论 0 275
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,403评论 1 313
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,596评论 3 334
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,769评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,464评论 5 344
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,075评论 3 327
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,705评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,848评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,831评论 2 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,678评论 2 354

推荐阅读更多精彩内容