iOS 多线程锁

+++
Categories = ["iOS",]
Tags = ["iOS","Lock",]
date = "2015-08-27T17:35:29+08:00"
title = "iOS 多线程锁"

+++

dispatch_semaphore

信号量是一个整形值并且具有一个初始计数值,并且支持两个操作:信号通知和等待。当一个信号量被信号通知,其计数会被增加。当一个线程在一个信号量上等待时,线程会被阻塞(如果有必要的话),直至计数器大于零,然后线程会减少这个计数。

在GCD中有三个函数是semaphore的操作,分别是:

  • dispatch_semaphore_create   创建一个semaphore
  • dispatch_semaphore_signal   发送一个信号
  • dispatch_semaphore_wait    等待信号

简单的介绍一下这三个函数,第一个函数有一个整形的参数,我们可以理解为信号的总量,dispatch_semaphore_signal是发送一个信号,自然会让信号总量加1,dispatch_semaphore_wait等待信号,当信号总量少于0的时候就会一直等待,否则就可以正常的执行,并让信号总量-1,根据这样的原理,我们便可以快速的创建一个并发控制来同步任务和有限资源访问控制。

dispatch_group_t group = dispatch_group_create();   
    dispatch_semaphore_t semaphore = dispatch_semaphore_create(10);   
    dispatch_queue_t queue = dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0);   
    for (int i = 0; i < 100; i++)   
    {   
        dispatch_semaphore_wait(semaphore, DISPATCH_TIME_FOREVER);   
        dispatch_group_async(group, queue, ^{   
            NSLog(@"%i",i);   
            sleep(2);   
            dispatch_semaphore_signal(semaphore);   
        });   
    }   
    dispatch_group_wait(group, DISPATCH_TIME_FOREVER);   
    dispatch_release(group);   
    dispatch_release(semaphore);   

上面代码创建了一个初使值为10的semaphore,每一次for循环都会创建一个新的线程,线程结束的时候会发送一个信号,线程创建之前会信号等待,所以当同时创建了10个线程之后,for循环就会阻塞,等待有线程结束之后会增加一个信号才继续执行,如此就形成了对并发的控制,如上就是一个并发数为10的一个线程队列。

pthread_mutex_t

  1. 如果互斥锁类型为 PTHREAD_MUTEX_NORMAL,则不提供死锁检测。尝试重新锁定互斥锁会导致死锁。如果某个线程尝试解除锁定的互斥锁不是由该线程锁定或未锁定,则将产生不确定的行为。

  2. 如果互斥锁类型为 PTHREAD_MUTEX_ERRORCHECK,则会提供错误检查。如果某个线程尝试重新锁定的互斥锁已经由该线程锁定,则将返回错误。如果某个线程尝试解除锁定的互斥锁不是由该线程锁定或者未锁定,则将返回错误。

  3. 如果互斥锁类型为 PTHREAD_MUTEX_RECURSIVE,则该互斥锁会保留锁定计数这一概念。线程首次成功获取互斥锁时,锁定计数会设置为 1。线程每重新锁定该互斥锁一次,锁定计数就增加 1。线程每解除锁定该互斥锁一次,锁定计数就减小 1。 锁定计数达到 0 时,该互斥锁即可供其他线程获取。如果某个线程尝试解除锁定的互斥锁不是由该线程锁定或者未锁定,则将返回错误。

  4. 如果互斥锁类型是 PTHREAD_MUTEX_DEFAULT,则尝试以递归方式锁定该互斥锁将产生不确定的行为。对于不是由调用线程锁定的互斥锁,如果尝试解除对它的锁定,则会产生不确定的行为。如果尝试解除锁定尚未锁定的互斥锁,则会产生不确定的行为。

//主线程中
TestObj *obj = [[TestObj alloc] init];

__block pthread_mutex_t mutex;
pthread_mutex_init(&mutex, NULL);

//线程1
dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{
    pthread_mutex_lock(&mutex);
    [obj method1];
    sleep(5);
    pthread_mutex_unlock(&mutex);
});

//线程2
dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{
    sleep(1);
    pthread_mutex_lock(&mutex);
    [obj method2];
    pthread_mutex_unlock(&mutex);
});

@synchronized

//主线程中
TestObj *obj = [[TestObj alloc] init];

//线程1
dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{
    @synchronized(obj){
        [obj method1];
        sleep(10);
    }
});

//线程2
dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{
    sleep(1);
    @synchronized(obj){
        [obj method2];
    }
});

NSLock

//主线程中
TestObj *obj = [[TestObj alloc] init];
NSLock *lock = [[NSLock alloc] init];

//线程1
dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{
    [lock lock];
    [obj method1];
    sleep(10);
    [lock unlock];
});

//线程2
dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{
    sleep(1);//以保证让线程2的代码后执行
    [lock lock];
    [obj method2];
    [lock unlock];
});

NSLock是Cocoa提供给我们最基本的锁对象,这也是我们经常所使用的,除lock和unlock方法外,NSLock还提供了tryLock和lockBeforeDate:两个方法,前一个方法会尝试加锁,如果锁不可用(已经被锁住),刚并不会阻塞线程,并返回NO。lockBeforeDate:方法会在所指定Date之前尝试加锁,如果在指定时间之前都不能加锁,则返回NO。

NSRecursiveLock

NSRecursiveLock实际上定义的是一个递归锁,这个锁可以被同一线程多次请求,而不会引起死锁。这主要是用在循环或递归操作中。我们先来看一个示例:

NSRecursiveLock *lock = [[NSRecursiveLock alloc] init];
 
dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{
 
    static void (^RecursiveMethod)(int);
 
    RecursiveMethod = ^(int value) {
 
        [lock lock];
        if (value > 0) {
 
            NSLog(@"value = %d", value);
            sleep(2);
            RecursiveMethod(value - 1);
        }
        [lock unlock];
    };
 
    RecursiveMethod(5);
});
 
dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{
 
    sleep(2);
    BOOL flag = [lock lockBeforeDate:[NSDate dateWithTimeIntervalSinceNow:1]];
    if (flag) {
        NSLog(@"lock before date");
 
        [lock unlock];
    } else {
        NSLog(@"fail to lock before date");
    }
});

NSRecursiveLock除了实现NSLocking协议的方法外,还提供了两个方法,分别如下:

// 在给定的时间之前去尝试请求一个锁
- (BOOL)lockBeforeDate:(NSDate *)limit
 
// 尝试去请求一个锁,并会立即返回一个布尔值,表示尝试是否成功
- (BOOL)tryLock

另外,NSRecursiveLock还声明了一个name属性,如下:

@property(copy) NSString *name

我们可以使用这个字符串来标识一个锁。Cocoa也会使用这个name作为错误描述信息的一部分。

NSCondition

使用NSCondition,实现多线程的同步,即,可实现生产者消费者问题。

基本思路是,首先要创建公用的NSCondition实例。然后:

消费者取得锁,取产品,如果没有,则wait,这时会释放锁,直到有线程唤醒它去消费产品;

生产者制造产品,首先也是要取得锁,然后生产,再发signal,这样可唤醒wait的消费者。

- (IBAction)conditionTest:(id)sender
{
    NSLog(@"begin condition works!");
    products = [[NSMutableArray alloc] init];
    condition = [[NSCondition alloc] init];
     
    [NSThread detachNewThreadSelector:@selector(createProducter) toTarget:self withObject:nil];
    [NSThread detachNewThreadSelector:@selector(createConsumenr) toTarget:self withObject:nil];
}
 
- (void)createConsumenr
{
    [condition lock];
    while ([products count] == 0) {
        NSLog(@"wait for products");
        [condition wait];
    }
    [products removeObjectAtIndex:0];
    NSLog(@"comsume a product");
    [condition unlock];
}
 
- (void)createProducter
{
    [condition lock];
    [products addObject:[[NSObject alloc] init]];
    NSLog(@"produce a product");
    [condition signal];
    [condition unlock];
}

NSConditionLock

//主线程中
NSConditionLock *theLock = [[NSConditionLock alloc] init];

//线程1
dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{
    for (int i=0;i<=2;i++)
    {
        [theLock lock];
        NSLog(@"thread1:%d",i);
        sleep(2);
        [theLock unlockWithCondition:i];
    }
});

//线程2
dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{
    [theLock lockWhenCondition:2];
    NSLog(@"thread2");
    [theLock unlock];
});

NSDistributedLock 分布式锁

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,133评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,682评论 3 390
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,784评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,508评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,603评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,607评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,604评论 3 415
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,359评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,805评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,121评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,280评论 1 344
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,959评论 5 339
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,588评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,206评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,442评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,193评论 2 367
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,144评论 2 352

推荐阅读更多精彩内容

  • 多线程需要一种互斥的机制来访问共享资源。 一、 互斥锁 互斥锁的意思是某一时刻只允许一个线程访问某一资源。为了保证...
    doudo阅读 731评论 0 5
  • 锁是一种同步机制,用于多线程环境中对资源访问的限制iOS中常见锁的性能对比图(摘自:ibireme): iOS锁的...
    LiLS阅读 1,514评论 0 6
  • 前言 一块资源可能会被多个线程共享,也就是多个线程可能会访问同一块资源,比如多个线程访问同一个对象、同一个变量、同...
    WQ_UESTC阅读 862评论 0 5
  • 前言 iOS开发中由于各种第三方库的高度封装,对锁的使用很少,刚好之前面试中被问到的关于并发编程锁的问题,都是一知...
    喵渣渣阅读 3,698评论 0 33
  • iOS线程安全的锁与性能对比 一、锁的基本使用方法 1.1、@synchronized 这是我们最熟悉的枷锁方式,...
    Jacky_Yang阅读 2,217评论 0 17