单KEY业务,数据库水平切分架构实践

本文将以“用户中心”为例,介绍“单KEY”类业务,随着数据量的逐步增大,数据库性能显著降低,数据库水平切分相关的架构实践:

如何来实施水平切分

水平切分后常见的问题

典型问题的优化思路及实践


一、用户中心

用户中心是一个非常常见的业务,主要提供用户注册、登录、信息查询与修改的服务,其核心元数据为:

User(uid, login_name, passwd, sex, age, nickname, …)

其中:

uid为用户ID,主键

login_name, passwd, sex, age, nickname, …等用户属性

数据库设计上,一般来说在业务初期,单库单表就能够搞定这个需求,典型的架构设计为:

user-center:用户中心服务,对调用者提供友好的RPC接口

user-db:对用户进行数据存储


二、用户中心水平切分方法

数据量越来越大时,需要对数据库进行水平切分,常见的水平切分算法有“范围法”和“哈希法”


范围法,以用户中心的业务主键uid为划分依据,将数据水平切分到两个数据库实例上去:

user-db1:存储0到1千万的uid数据

user-db2:存储1到2千万的uid数据


范围法的优点是:

切分策略简单,根据uid,按照范围,user- center很快能够定位到数据在哪个库上

扩容简单,如果容量不够,只要增加user-db3即可

范围法的不足是:

uid必须要满足递增的特性

数据量不均,新增的user-db3,在初期的数据会比较少

请求量不均,一般来说,新注册的用户活跃度会比较高,故user-db2往往会比user-db1负载要高,导致服务器利用率不平衡


哈希法,也是以用户中心的业务主键uid为划分依据,将数据水平切分到两个数据库实例上去:

user-db1:存储uid取模得1的uid数据

user-db2:存储uid取模得0的uid数据


哈希法的优点是:

切分策略简单,根据uid,按照hash,user-center很快能够定位到数据在哪个库上

数据量均衡,只要uid是均匀的,数据在各个库上的分布一定是均衡的

请求量均衡,只要uid是均匀的,负载在各个库上的分布一定是均衡的

哈希法的不足是:

扩容麻烦,如果容量不够,要增加一个库,重新hash可能会导致数据迁移,如何平滑的进行数据迁移,是一个需要解决的问题


三、用户中心水平切分后带来的问题

使用uid来进行水平切分之后,整个用户中心的业务访问会遇到什么问题呢?


对于uid属性上的查询可以直接路由到库,假设访问uid=124的数据,取模后能够直接定位db-user1:


对于非uid属性上的查询,例如login_name属性上的查询,就悲剧了:

假设访问login_name=shenjian的数据,由于不知道数据落在哪个库上,往往需要遍历所有库,当分库数量多起来,性能会显著降低。


如何解决分库后,非uid属性上的查询问题,是后文要重点讨论的内容。


四、用户中心非uid属性查询需求分析

任何脱离业务的架构设计都是耍流氓,在进行架构讨论之前,先来对业务进行简要分析,看非uid属性上有哪些查询需求。


根据楼主这些年的架构经验,用户中心非uid属性上经常有两类业务需求:

(1)用户侧,前台访问,最典型的有两类需求

用户登录:通过login_name/phone/email查询用户的实体,1%请求属于这种类型

用户信息查询:登录之后,通过uid来查询用户的实例,99%请求属这种类型

用户侧的查询基本上是单条记录的查询,访问量较大,服务需要高可用,并且对一致性的要求较高。


(2)运营侧,后台访问,根据产品、运营需求,访问模式各异,按照年龄、性别、头像、登陆时间、注册时间来进行查询。

运营侧的查询基本上是批量分页的查询,由于是内部系统,访问量很低,对可用性的要求不高,对一致性的要求也没这么严格。


这两类不同的业务需求,应该使用什么样的架构方案来解决呢?


五、用户中心水平切分架构思路

用户中心在数据量较大的情况下,使用uid进行水平切分,对于非uid属性上的查询需求,架构设计的核心思路为:

针对用户侧,应该采用“建立非uid属性到uid的映射关系”的架构方案

针对运营侧,应该采用“前台与后台分离”的架构方案


六、用户中心-用户侧最佳实践

【索引表法】

思路:uid能直接定位到库,login_name不能直接定位到库,如果通过login_name能查询到uid,问题解决

解决方案

建立一个索引表记录login_name->uid的映射关系

用login_name来访问时,先通过索引表查询到uid,再定位相应的库

索引表属性较少,可以容纳非常多数据,一般不需要分库

如果数据量过大,可以通过login_name来分库

潜在不足:多一次数据库查询,性能下降一倍


【缓存映射法】

思路:访问索引表性能较低,把映射关系放在缓存里性能更佳

解决方案

login_name查询先到cache中查询uid,再根据uid定位数据库

假设cache miss,采用扫全库法获取login_name对应的uid,放入cache

login_name到uid的映射关系不会变化,映射关系一旦放入缓存,不会更改,无需淘汰,缓存命中率超高

如果数据量过大,可以通过login_name进行cache水平切分

潜在不足:多一次cache查询


login_name生成uid

思路:不进行远程查询,由login_name直接得到uid

解决方案

在用户注册时,设计函数login_name生成uid,uid=f(login_name),按uid分库插入数据

用login_name来访问时,先通过函数计算出uid,即uid=f(login_name)再来一遍,由uid路由到对应库

潜在不足:该函数设计需要非常讲究技巧,有uid生成冲突风险


login_name基因融入uid

思路:不能用login_name生成uid,可以从login_name抽取“基因”,融入uid中

假设分8库,采用uid%8路由,潜台词是,uid的最后3个bit决定这条数据落在哪个库上,这3个bit就是所谓的“基因”。


解决方案

在用户注册时,设计函数login_name生成3bit基因,login_name_gene=f(login_name),如上图粉色部分

同时,生成61bit的全局唯一id,作为用户的标识,如上图绿色部分

接着把3bit的login_name_gene也作为uid的一部分,如上图屎黄色部分

生成64bit的uid,由id和login_name_gene拼装而成,并按照uid分库插入数据

用login_name来访问时,先通过函数由login_name再次复原3bit基因,login_name_gene=f(login_name),通过login_name_gene%8直接定位到库


七、用户中心-运营侧最佳实践

前台用户侧,业务需求基本都是单行记录的访问,只要建立非uid属性 login_name / phone / email到uid的映射关系,就能解决问题。

后台运营侧,业务需求各异,基本是批量分页的访问,这类访问计算量较大,返回数据量较大,比较消耗数据库性能。


如果此时前台业务和后台业务公用一批服务和一个数据库,有可能导致,由于后台的“少数几个请求”的“批量查询”的“低效”访问,导致数据库的cpu偶尔瞬时100%,影响前台正常用户的访问(例如,登录超时)。

而且,为了满足后台业务各类“奇形怪状”的需求,往往会在数据库上建立各种索引,这些索引占用大量内存,会使得用户侧前台业务uid/login_name上的查询性能与写入性能大幅度降低,处理时间增长。


对于这一类业务,应该采用“前台与后台分离”的架构方案:

用户侧前台业务需求架构依然不变,产品运营侧后台业务需求则抽取独立的web / service / db来支持,解除系统之间的耦合,对于“业务复杂”“并发量低”“无需高可用”“能接受一定延时”的后台业务:

可以去掉service层,在运营后台web层通过dao直接访问db

不需要反向代理,不需要集群冗余

不需要访问实时库,可以通过MQ或者线下异步同步数据

在数据库非常大的情况下,可以使用更契合大量数据允许接受更高延时的“索引外置”或者“HIVE”的设计方案


八、总结

将以“用户中心”为典型的“单KEY”类业务,水平切分的架构点,本文做了这样一些介绍。


水平切分方式

范围法

哈希法


水平切分后碰到的问题

通过uid属性查询能直接定位到库,通过非uid属性查询不能定位到库


非uid属性查询的典型业务

用户侧,前台访问,单条记录的查询,访问量较大,服务需要高可用,并且对一致性的要求较高

运营侧,后台访问,根据产品、运营需求,访问模式各异,基本上是批量分页的查询,由于是内部系统,访问量很低,对可用性的要求不高,对一致性的要求也没这么严格


这两类业务的架构设计思路

针对用户侧,应该采用“建立非uid属性到uid的映射关系”的架构方案

针对运营侧,应该采用“前台与后台分离”的架构方案


用户前台侧,“建立非uid属性到uid的映射关系”最佳实践

索引表法:数据库中记录login_name->uid的映射关系

缓存映射法:缓存中记录login_name->uid的映射关系

login_name生成uid

login_name基因融入uid


运营后台侧,“前台与后台分离”最佳实践

前台、后台系统web/service/db分离解耦,避免后台低效查询引发前台查询抖动

可以采用数据冗余的设计方式

可以采用“外置索引”(例如ES搜索系统)或者“大数据处理”(例如HIVE)来满足后台变态的查询需求


转自:沈剑的微信文章

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 211,123评论 6 490
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,031评论 2 384
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 156,723评论 0 345
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,357评论 1 283
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,412评论 5 384
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,760评论 1 289
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,904评论 3 405
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,672评论 0 266
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,118评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,456评论 2 325
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,599评论 1 340
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,264评论 4 328
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,857评论 3 312
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,731评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,956评论 1 264
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,286评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,465评论 2 348

推荐阅读更多精彩内容