Decision Tree Learning

Here, we will discuss two decision tree algorithms, mainly including ID3 and C4.5 algorithm. Firstly, let's define decision tree learning.

At the begining

Decision Tree Learing is the construction of a decision tree from class-labeled training tuples.
A decision tree is a flow-chart like strcuture, where each internal node denotes a test on an attribute, each branch represents the outcome of a test, and each leaf node holds a class label. The topmost node in a tree is the root node.
--- From wiki

ID3 algorithm

Next, we now can take a look at the ID3 algorithm. ID3(Iterative Dichotomiser 3) ,which based on Ockham's Razor, is an algorithm invented by Ross Quinlan.

Ockham's Razor is a problem-solving principle attributed to William of Ockham, and was later used in many aspects of science research. To conclude this theory in short, simple theories are preferable to more complex ones becuase they are more testable. When we mean testable, it means how well our theories are performing on other new datasets.

And the intuition behind this algorithm is this Ockham's Razor, so that we always prefer the smaller decision trees over the larger ones. Also, in Information Theory, the less expected information the dataset has, the larger Information Gain is.

ID3 algorithm's core idea is to use Information Gain to determine whether a label should be choose, and choose the one that maximize the Information Gain after splitting the label.

Now, let's take a look at the example that follows.

weather_example.png

We can tell that there is a total of 14 examples, which contains 9 positive examples and 5 negative ones. And we can calculate the entropy of current information

Suppose we look at the label outlook to classify the output,

Then we can see that the dataset is divided into three parts, and each branch's Information Entropy is

And the Information Entropy after splitting can be calculated as

Then the final Information Gain after splitting with the label T is

Before splitting at each non-leaf node of the decision tree, we should first calculate the Information Gain each label may bring, and then choose the label that can maximize the Information Gain. As the larger Information Gain there is, the greater it can classify the data sample. This top-down greedy criterion is the core idea of ID3.

Summary of ID3

  1. Calculate the entropy of every attribute using the data set S
  2. Split the set S into subsets using the attribute for which the resulting entropy is minimum (or, information gain is maximum)
  3. Make a decision tree node containing thta attribute
  4. Recurse on subsets using remaining attributes.
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,686评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,668评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,160评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,736评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,847评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,043评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,129评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,872评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,318评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,645评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,777评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,470评论 4 333
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,126评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,861评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,095评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,589评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,687评论 2 351

推荐阅读更多精彩内容

  • 如此浑噩不知前途,怎能幻想明日空气。
    moodian阅读 185评论 0 0
  • 分别的初夏,总认为还会相见,头也不回,清高的留下背影,可是竟再也没见你…… 电影院寻不到了,滄湾变了容颜,昨天跑去...
    长跑人阅读 531评论 0 1
  • 那一天看到这一段话:“你还记得你最快乐的时刻吗? 那天,你和喜欢的人走在路上,她牵着你的手。你清楚记得那天的风是凉...
    小小小小米77阅读 432评论 0 0
  • 废话,可以跳过 在这个色彩斑斓的时代,各种app、各式各样的特效充斥着我们的眼球。在我看来,炫酷的特效在很大程度上...
    tzc123阅读 4,126评论 1 5