TCGA甲基化芯片数据质控和过滤

在step1中,我们获得了TCGA中OSCC 的32个病人的T-N配对样本和对应的临床信息,并将其组成了一个名为my_Load的ChAMP对象。

rm(list = ls())
library(ChAMP)
library(stringr)
load('./Rdata/step1_myLoad.Rdata')
myLoad$beta[1:4,1:4]
#>            TCGA-CV-6959-01 TCGA-CV-6436-11 TCGA-CV-5966-11 TCGA-CV-6939-11
#> cg00000029       0.2999564       0.2905091       0.3686591       0.3632641
#> cg00000108       0.4633994       0.4575858       0.4726964       0.4645730
#> cg00000109       0.4633994       0.4575858       0.4726964       0.4645730
#> cg00000165       0.6190992       0.1511787       0.2370243       0.1444160
myLoad$pd[1:4,1:4]
#>           sampleID anatomic_neoplasm_subdivision      patient group_list
#> 1: TCGA-CV-6959-01                   Oral Tongue TCGA-CV-6959      Tumor
#> 2: TCGA-CV-6436-11                   Oral Tongue TCGA-CV-6436     Normal
#> 3: TCGA-CV-5966-11                   Oral Cavity TCGA-CV-5966     Normal
#> 4: TCGA-CV-6939-11                   Oral Tongue TCGA-CV-6939     Normal

2.样本和探针过滤

2.1 归一化

做后续差异分析之前,需要对信号值矩阵进行归一化。这一步骤消耗计算资源较多,配置不够可能会跑很久或者会中断。

norm_file = "./Rdata/step2_champ_myNorm.Rdata"
if(!file.exists(norm_file)){
  myNorm <- champ.norm(beta=myLoad$beta,arraytype="450K",cores=8)
  save(myNorm,file = norm_file)
}
load(norm_file)

# 归一化过程产生了缺失值,需要将有NA的样本和它们的配对样本一起删掉
num.na <- apply(myNorm,2,function(x)(sum(is.na(x))))
table(num.na)
#> num.na
#>      0 258616 260092 264579 
#>     61      1      1      1
names(num.na) = colnames(myNorm)
dt = names(num.na[num.na>0])
dn = str_replace(dt,"-01","-11")
keep = setdiff(colnames(myNorm),c(dt,dn))
myNorm = myNorm[,keep]
pd = myLoad$pd
pd = pd[pd$sampleID %in% keep,]
identical(pd$sampleID,colnames(myNorm))
#> [1] TRUE

删除缺失值样本后,还剩58个(29对)样本。

2.2 数据质控三张图

# 主成分分析
library(FactoMineR)
library(factoextra) 
dat <- t(myNorm)

group_list=pd$group_list
table(group_list)
#> group_list
#> Normal  Tumor 
#>     29     29

dat.pca <- PCA(dat, graph = FALSE) 
fviz_pca_ind(dat.pca,
             geom.ind = "point", 
             col.ind = group_list, 
             addEllipses = TRUE, 
             legend.title = "Groups")

# 热图
cg=names(tail(sort(apply(myNorm,1,sd)),1000))
library(pheatmap)
ac=data.frame(group=group_list)
rownames(ac)=colnames(myNorm)  
pheatmap(myNorm[cg,],show_colnames =F,show_rownames = F,
         annotation_col=ac)
dev.off()
#> null device 
#>           1

# 相关关系矩阵热图
pheatmap::pheatmap(cor(myNorm[cg,]),
                   annotation_col = ac,
                   show_rownames = F,
                   show_colnames = F)

2.3 剔除聚类失败的样本

图中看出三个样本异常,删掉它们和它们的配对样本。

pn = c("TCGA-CV-5971-01","TCGA-CV-6953-11","TCGA-CV-6955-11")
drop = str_sub(colnames(myNorm),1,12) %in% str_sub(pn,1,12)
table(drop)
#> drop
#> FALSE  TRUE 
#>    52     6
myNorm = myNorm[,!drop]
dim(myNorm)
#> [1] 412481     52

pd = pd[!(pd$patient %in% str_sub(pn,1,12)),]
identical(pd$sampleID,colnames(myNorm))
#> [1] TRUE

save(pd,myNorm,file = "./Rdata/step2_filtered_pd_myNorm.Rdata")

根据top1000sd的热图和相关性热图,会发现三个样本是异常的,因此又剔除3对,剩下26对(52个)样本,用于下一步的差异分析。我试了一下这三个样本不删除的话,后面做差异甲基化位点的热图也是聚类不成功的,删掉会好些。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 210,978评论 6 490
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 89,954评论 2 384
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 156,623评论 0 345
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,324评论 1 282
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,390评论 5 384
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,741评论 1 289
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,892评论 3 405
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,655评论 0 266
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,104评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,451评论 2 325
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,569评论 1 340
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,254评论 4 328
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,834评论 3 312
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,725评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,950评论 1 264
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,260评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,446评论 2 348