基于python的显著性检验

需要用到numpy库

import numpy as np
import scipy.stats as stats
import scipy.optimize as opt

首先我们来创造两个数组作为测试数据

n = 200
norm_dist = stats.norm(loc=0.5, scale=10)  #构造一个正态分布,均值为0.5,标准差为10  “标准差”也称“均方差”,是“方差”开根号
dat = norm_dist.rvs(size=n)         #随机取200个点
print ("mean of data is: " + str(np.mean(dat)))
print ("median of data is: " + str(np.median(dat)))
print ("standard deviation of data is: " + str(np.std(dat)))  #因为这200个点是随机取得,所以跟原先的正态分布可能有一些不同
norm_dist2 = stats.norm(loc=0.2, scale=1)
dat2 = norm_dist2.rvs(size=n/2)#随机取100个点
print ("mean of data is: " + str(np.mean(dat2)))
print ("median of data is: " + str(np.median(dat2)))
print ("standard deviation of data is: " + str(np.std(dat2)))

对这两个数组分析差异---双样本的t检验

stat_val, p_val = stats.ttest_ind(dat, dat2, equal_var=False)
#看看两个分布在均值上有没有显著差异
#注意,这里我们生成的第二组数据样本大小、方差和第一组均不相等,在运用t检验时需要使用Welch's t-test
#即指定ttest_ind中的equal_var=False。
print ('Two-sample t-statistic D = %6.3f, p-value = %6.4f' % (stat_val, p_val))

计算两个序列的相关性,并做显著性检验

import scipy.stats as stats  
x = [76,81,78,76,76,78,76,78,98,88,76,66,44,67,65,59,87,77,79,85,68,76,77,98,99,98,87,67,78]    
y = [43,33,23,34,31,51,56,43,44,45,32,33,28,39,31,38,21,27,43,46,41,41,48,56,55,45,68,54,33] 
r, p=stats.pearsonr(x,y) 
[out]:(0.39341862097439129, 0.034735931329532836) 

相关系数为0.39,说明这两个序列存在一定的相关性
p-value为0.035,说明结果是统计显著的

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,013评论 6 481
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,205评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 152,370评论 0 342
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,168评论 1 278
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,153评论 5 371
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,954评论 1 283
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,271评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,916评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,382评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,877评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,989评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,624评论 4 322
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,209评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,199评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,418评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,401评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,700评论 2 345

推荐阅读更多精彩内容