应用统计学与R语言实现学习笔记(七)——拟合优度检验

Chapter 7 Goodness of Fit

本篇是第七章,内容是拟合优度检验。

1.多项分布

拟合优度检验的第一个应用是关于多项总体。那么多项总体(或者多项分布)是什么呢?

  • 多项分布是二项分布的推广。
  • 总体被分为几个互不相交的类别。
  • 多项分布假设:每次试验有且仅有一个结果发生;每次试验独立;每次试验概率不变。

拟合优度检验-多项总体步骤

  • 将所观测到的数据与理论上的期望值进行比较。
  • 步骤:

拟合优度检验用于多项总体检验没有直接的函数,这里用R语言的自编函数实现,体会下具体的算法(当然感觉自己写的略复杂)。代码依旧是后面放出,函数具体使用说明也会附上。

2.独立性

依旧是从问题出发——性别与购物频率是否有关系
独立性检验——该统计方法常用于检验两个分类变量是否有关系。那么首先要提到两个概念——独立事件和非独立事件(independent and dependent events)。

  • 独立事件——一个事物发生不会对其他事物发生概率造成影响。
  • 非独立事件——一个事物发生会影响其他事物发生概率。

接着统计学构建出了一个表来进行独立性检验。这就是联立表(Contingency Tables)。

  • 解决多总体比例问题。
  • 之前通常用两个或两个以上特征来对样本观测值分类。
  • 也被称为交叉表。

一般在R中,使用Table函数即可生成两个特征(分类变量)的联立表,xtabs则是根据公式创立联立表,prop.table则可以直接计算出比例。
联立表如何做独立性检验呢?首先提出假设(这里不详述,相信大家应该懂怎么建立了),接着计算期望的联立表每个单元格的期望频次。

接着就可以对比实际频次和期望频次,然后我们用卡方(chi-square)统计量进行检验。

当然这个方法也可以用来检验顺序变量和分类变量。方法类似,这里不赘述。

3.概率分布

拟合优度检验的最重要的应用其实是探测一个数据具体的概率分布。
当然探测数据分布的第一方式——是可见即可得的可视化。主要包括前面提到过的直方图和QQ图。
QQ图——Quantile-Quantile Plots(分位数图):

  • 适用于小数据集。
  • 猜测分布的基础方法。
  • 用来绘制QQ图的数据必须落在该分布内。
  • 如果散点图接近直线,说明数据分布接近正态分布。

这里给出绘制QQ图的原理:

  • 对样本容量为N的样本数据按照升序排序。
  • 计算从1到N排序的百分比。
  • 从百分位数得分的关系找到中心分数。
  • 找到对应于中心分数的z值(标准正态分布)。
  • 绘制对应z值的观测点数据。

接着用R语言实现

#QQ plot
#generation of random number that fall in normal distribution
a<-rnorm(200,0,1)

#plot
jpeg("plot1.jpg",width = 5000,height = 4000,units = "px",res = 1000)
qqnorm(a)
qqline(a,col="red")
dev.off()

除了QQ图之外,另外一类方法就是通过统计方法——拟合优度检验来探测数据是否正态分布。
以正态分布为例。
过程:

  • 获取样本数据。
  • 将样本结果分组(单元格)。
  • 比较实际与预期值。

统计量如下:

R语言中可以用chisp.test函数进行正态分布测验。

此外对于有某种特定分布的非正态数据可以通过数学变换转变为正态分布数据。
常用的一般包括:

  • 对数变换。
  • 开方变换。
  • 指数或平方变换。

这里的数学变换需要根据大家实际研究需求决定。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,544评论 6 501
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,430评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,764评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,193评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,216评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,182评论 1 299
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,063评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,917评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,329评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,543评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,722评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,425评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,019评论 3 326
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,671评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,825评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,729评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,614评论 2 353

推荐阅读更多精彩内容