五.Kafka producer拦截器(interceptor)

5.1 拦截器原理

Producer拦截器(interceptor)是在Kafka 0.10版本被引入的,主要用于实现clients端的定制化控制逻辑。

对于producer而言,interceptor使得用户在消息发送前以及producer回调逻辑前有机会对消息做一些定制化需求,比如修改消息等。同时,producer允许用户指定多个interceptor按序作用于同一条消息

从而形成一个拦截链(interceptor chain)。Intercetpor的实现接口是org.apache.kafka.clients.producer.ProducerInterceptor,其定义的方法包括:

(1)confifigure(confifigs)

获取配置信息和初始化数据时调用。

(2)onSend(ProducerRecord)

该方法封装进KafkaProducer.send方法中,即它运行在用户主线程中。Producer确保在消息被序列化以及计算分区前调用该方法。用户可以在该方法中对消息做任何操作,但最好保证不要修改消息所属的topic和分区,否则会影响目标分区的计算

(3)onAcknowledgement(RecordMetadata, Exception):该方法会在消息被应答或消息发送失败时调用,并且通常都是在producer回调逻辑触发之前。onAcknowledgement运行在producer的IO线程中,因此不要在该方法中放入很重的逻辑,否则会拖慢producer的消息发送效率

(4)close:

关闭interceptor,主要用于执行一些资源清理工作如前所述,interceptor可能被运行在多个线程中,因此在具体实现时用户需要自行确保线程安全。另外倘若指定了多个interceptor,则producer将按照指定顺序调用它们,并仅仅是捕获每个interceptor可能抛出的异常记录到错误日志中而非在向上传递。这在使用过程中要特别留意。

5.2 拦截器案例

1)需求:

实现一个简单的双interceptor组成的拦截链。第一个interceptor会在消息发送前将时间戳信息加到消息value的最前部;第二个interceptor会在消息发送后更新成功发送消息数或失败发送消息数。

2)案例实操

(1)增加时间戳拦截器

package com.itstar.kafka.interceptor;

import java.util.Map;

import org.apache.kafka.clients.producer.ProducerInterceptor;

import org.apache.kafka.clients.producer.ProducerRecord;

import org.apache.kafka.clients.producer.RecordMetadata;

public class TimeInterceptor implements ProducerInterceptor<String, String> {

@Override

public void configure(Map<String, ?> configs) {

}

@Override

public ProducerRecord<String, String> onSend(ProducerRecord<String, String>

record) {

// 创建一个新的record,把时间戳写入消息体的最前部

return new ProducerRecord(record.topic(), record.partition(),

record.timestamp(), record.key(),

System.currentTimeMillis() + "," + record.value().toString());

}

@Override

public void onAcknowledgement(RecordMetadata metadata, Exception exception)

{

}

@Override

public void close() {

}

}

(2)统计发送消息成功和发送失败消息数,并在producer关闭时打印这两个计数器

package com.itstar.kafka.interceptor;

import java.util.Map;

import org.apache.kafka.clients.producer.ProducerInterceptor;

import org.apache.kafka.clients.producer.ProducerRecord;

import org.apache.kafka.clients.producer.RecordMetadata;

public class CounterInterceptor implements ProducerInterceptor<String, String>{

private int errorCounter = 0;

private int successCounter = 0;

@Override

public void configure(Map<String, ?> configs) {

}

@Override

public ProducerRecord<String, String> onSend(ProducerRecord<String, String>

record) {

return record;

}

@Override

public void onAcknowledgement(RecordMetadata metadata, Exception exception)

{

// 统计成功和失败的次数

if (exception == null) {

successCounter++;

} else {

errorCounter++;

}

}

@Override

public void close() {

// 保存结果

System.out.println("Successful sent: " + successCounter);

System.out.println("Failed sent: " + errorCounter);

}

}

(3)producer主程序

package com.itstar.kafka.interceptor;

import java.util.ArrayList;

import java.util.List;

import java.util.Properties;

import org.apache.kafka.clients.producer.KafkaProducer;

import org.apache.kafka.clients.producer.Producer;

import org.apache.kafka.clients.producer.ProducerConfig;

import org.apache.kafka.clients.producer.ProducerRecord;

public class InterceptorProducer {

public static void main(String[] args) throws Exception {

// 1 设置配置信息

Properties props = new Properties();

props.put("bootstrap.servers", "bigdata11:9092");

props.put("acks", "all");

props.put("retries", 0);

props.put("batch.size", 16384);

props.put("linger.ms", 1);

props.put("buffer.memory", 33554432);

props.put("key.serializer",

"org.apache.kafka.common.serialization.StringSerializer");

props.put("value.serializer",

"org.apache.kafka.common.serialization.StringSerializer");

// 2 构建拦截链

List<String> interceptors = new ArrayList<>();

interceptors.add("com.itstar.kafka.interceptor.TimeInterceptor");

interceptors.add("com.itstar.kafka.interceptor.CounterInterceptor");

props.put(ProducerConfig.INTERCEPTOR_CLASSES_CONFIG, interceptors);

String topic = "first";

Producer<String, String> producer = new KafkaProducer<>(props);

// 3 发送消息

for (int i = 0; i < 10; i++) {

ProducerRecord<String, String> record = new ProducerRecord<>(topic,

"message" + i);

producer.send(record);

}

// 4 一定要关闭producer,这样才会调用interceptor的close方法

producer.close();

}

}

3)测试

(1)在kafka上启动消费者,然后运行客户端java程序。

[itstar@bigdata11 kafka]$ bin/kafka-console-consumer.sh --zookeeper

bigdata11:2181 --from-beginning --topic first

1501904047034,message0

1501904047225,message1

1501904047230,message2

1501904047234,message3

1501904047236,message4

1501904047240,message5

1501904047243,message6

1501904047246,message7

1501904047249,message8

1501904047252,message9

(2)观察java平台控制台输出数据如下:

Successful sent: 10

Failed sent: 0

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 210,978评论 6 490
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 89,954评论 2 384
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 156,623评论 0 345
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,324评论 1 282
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,390评论 5 384
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,741评论 1 289
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,892评论 3 405
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,655评论 0 266
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,104评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,451评论 2 325
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,569评论 1 340
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,254评论 4 328
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,834评论 3 312
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,725评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,950评论 1 264
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,260评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,446评论 2 348

推荐阅读更多精彩内容