作者:yxc
链接:https://www.acwing.com/blog/content/25/
来源:AcWing
1,求斐波那契数列的第 n 项
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <ctime>
using namespace std;
const int MOD = 1000000007;
void mul(int a[][2], int b[][2], int c[][2])
{
int temp[][2] = {{0, 0}, {0, 0}};
for (int i = 0; i < 2; i ++ )
for (int j = 0; j < 2; j ++ )
for (int k = 0; k < 2; k ++ )
{
long long x = temp[i][j] + (long long)a[i][k] * b[k][j];
temp[i][j] = x % MOD;
}
for (int i = 0; i < 2; i ++ )
for (int j = 0; j < 2; j ++ )
c[i][j] = temp[i][j];
}
int f_final(long long n)
{
int x[2] = {1, 1};
int res[][2] = {{1, 0}, {0, 1}};
int t[][2] = {{1, 1}, {1, 0}};
long long k = n - 1;
while (k)
{
if (k&1) mul(res, t, res);
mul(t, t, t);
k >>= 1;
}
int c[2] = {0, 0};
for (int i = 0; i < 2; i ++ )
for (int j = 0; j < 2; j ++ )
{
long long r = c[i] + (long long)x[j] * res[j][i];
c[i] = r % MOD;
}
return c[0];
}
int main()
{
long long n ;
cin >> n;
cout << f_final(n) << endl;
return 0;
}
1,求斐波那契数列的 前 n 项 的和
#include<iostream>
#include<cstring>
using namespace std;
typedef long long LL;
const int N = 3;
int n , m;
void mul(int c[] ,int a[] , int b[][N])
{
int tmp[N] = {0};
for(int i = 0 ; i < N ;i ++ )
for(int j = 0 ; j < N ; j ++ )
tmp[i] = (tmp[i] + (LL)a[j] * b[j][i]) % m;
memcpy(c , tmp , sizeof tmp);
}
void mul(int c[][N] , int a[][N] , int b[][N])
{
int tmp[N][N] = {0};
for(int i = 0 ; i < N ;i ++ )
for(int j = 0 ; j < N ; j ++)
for(int k = 0 ; k < N ; k ++ )
tmp[i][j] = (tmp[i][j] + (LL)a[i][k] * b[k][j] ) % m;
memcpy(c , tmp , sizeof tmp);
}
int main()
{
cin >> n >> m;
int f[N] = {1 ,1 ,1}; // f1 : {f1 , f2 , s1}
// fn : {fn , f(n + 1) , Sn}
// f(n) * A = f (n+1)
int A[N][N] = {
{0 ,1 ,0},
{1 ,1 ,1},
{0 ,0 ,1}
};
n -- ;
while(n)
{
if(n & 1) mul(f ,f ,A); // res = res * a
mul(A , A , A); // a = a * a
n >>= 1;
}
cout << f[2] << endl;
return 0;
}