详解神经网络反向传播算法之Let's practice Backpropagation

本文相关代码可以从Backpropagation下载

在上一篇文章小白也能看懂的BP反向传播算法之Into-Backpropagation
,我们研究了一个嵌套神经元的反向传播的计算,了解到反向传播本质就是利用链式法则,求取所需要更新的变量的偏导数!但我们前文所研究的神经元是比较简单的,没有复杂的函数,也没有复杂的结构,而真实的神经网络中,往往神经元的函数和结构都比较复杂!

为了更好的过渡到复杂的神经网络中的反向传播,本文先引入复杂函数,也就是神经网络中最基本的激活函数,并联系如何计算反向传播,为后续进入神经网络的反向传播计算打下坚实的基础!

Lets get started!!!

我们将引入神经网络最常见的激活函数sigmoid函数!


image.png
image.png

实现这个单一神经元很简单

import numpy as np
def sigmoid(x):
    return 1/(1+np.exp(-x))
a=-2
f=sigmoid(a)
print(f) #outputs 0.1192

Aim

接下来依旧是老套路,我们是=试着使输出值增加。首先我们 就要计算Sigmoid的函数的导数,根据微分的法则,我们可以求出


image.png

然后,就可以得到更新变量的方程:


image.png

我们用python实现:

import numpy as np


def sigmoid(x):
    return 1./(1+np.exp(-x))


def derivative_sigmoid(x):
    return sigmoid(x) * (1 - sigmoid(x))


a = -2
h = 0.1
a = a + h * derivative_sigmoid(a)
f = sigmoid(a)
print(f)  #outputs 0.1203

观察输出结果,0.1203比0.1192大.所以我们的算法成功将输出值增加!

现在我们已经知道如何对一个复杂的函数的神经元进行反向传播,从而改变输出值!那么,接下来我们就将复杂函数放到一个嵌套的神经网络结构中,看看如何进行反向传播的计算:


image.png

这个神经网络的结构就是在前文的基础上增加了一个sigmoid函数!我们先用python实现它的正向传播

import numpy as np


def addition(x,y):
    return x+y


def product(x, y):
    return x * y


def sigmoid(x):
    return 1 / (1 + np.exp( -x ))


a=1
b=-2
c=-3
d=addition(a,b)
e=product(c,d)
f=sigmoid(e)
print(f)  #outputs 0.952574

现在我们开始计算反向传播,首先很明确的是,要进行反向传播,就得求得所要更新变量的微分:


image.png

所以我们需要的计算就是a,b,c三个变量的偏导数!具体的求解规则和前文一样就是倒着从输出往回推,看看经过了哪些神经元的计算,然后利用链式法则:


image.png

希望读者能独立推导出上述的公式!

得到上述微分的计算公式,我们就要开始实际计算这些微分值,不难求出


image.png

如果读者对此推导过程依旧有疑问,请重新阅读前两篇文章即能理解!

最后,就是编写程序来实现反向传播了!

import numpy as np


def addition(x, y):
    return x + y


def product(x, y):
    return x * y


def sigmoid(x):
    return 1 / (1 + np.exp(-x))


def derivative_sigmoid(x):
    return sigmoid(x) * (1 - sigmoid(x))


# initialization
a = 1
b = -2
c = -3
# forward-propogation
d = addition(a, b)
e = product(c, d)
# step size
h = 0.1
# derivatives
derivative_f_e = derivative_sigmoid(e)
derivative_e_d = c
derivative_e_c = d
derivative_d_a = 1
derivative_d_b = 1
# backward-propogation (Chain rule)
derivative_f_a = derivative_f_e * derivative_e_d * derivative_d_a
derivative_f_b = derivative_f_e * derivative_e_d * derivative_d_b
derivative_f_c = derivative_f_e * derivative_e_c
# update-parameters
a = a + h * derivative_f_a
b = b + h * derivative_f_b
c = c + h * derivative_f_c
d = addition(a, b)
e = product(c, d)
f = sigmoid(e)
print(f)  # prints 0.9563

输出结果是0.9563比0.9525大,可以看到,经过一次反向传播,我们的输出值成功增加!

经过练习,我们可以发现,不管网络多复杂,无非是链式法则求导是复杂一些,只要我们能求出微分,就能进行反向传播!

待续

我们目前练习的都还是比较简单的网络,但恭喜你已经了解到反向传播的最核心的思想!下一篇文章小白也能看懂的BP反向传播算法之Further into Backpropagation,我们会正式引入一个真实的神经网络结构,然后进行反向传播的计算!并且利用矩阵来简化计算过程!

本文相关代码可以从Backpropagation下载

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,384评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,845评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,148评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,640评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,731评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,712评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,703评论 3 415
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,473评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,915评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,227评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,384评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,063评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,706评论 3 324
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,302评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,531评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,321评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,248评论 2 352

推荐阅读更多精彩内容