Random Systems

1.Random walks

The walker begins at the origin,x=0,and the first step is chosen at random to be either to the left or right,each with probability 1/2.In a physical process such as the motion of a molecule in solution,the time between steps is approximately a constant , so the step number is roughly proportional to time .Therefore,we often refer to the walker's position as a function of time.
Routine:We generate a random number in the range between 0 and 1 and compare its value to 1/2.If it is less than 1/2,our walker moves right ,otherwise it steps to the left.
If the total number of steps is n, and k steps are taken to right,then we can calculate in maths :


final19.gif
final2.gif

final3.gif

代码://www.greatytc.com/p/c3b6937c10ae

final4.gif

代码://www.greatytc.com/p/b40283b37c41

final5.gif

代码://www.greatytc.com/p/ad9b5a52ce78

Conclusion:

We can see that the results of simulation are well approximately to the analyses in maths when the number of walkers are large enough.

When step length is random

we can change the code

length = 2*np.random.rand() - 1

final6.gif
final7.gif
If the probability of moving to right is not equal to 1/2:

For example:

for i in range(100):
    for j in range(500):
        ruler = np.random.rand()
        if ruler<=0.75:
            x_now[j] = x_now[j] + 1
        else:
            x_now[j] = x_now[j] - 1
        x2_now[j] = x_now[j]**2
final8.gif
Random walk 2D
final12.gif

2.Random walks and diffusion

In our discussion of random walkers we have, up to this point, focused on the motion of individual walkers. An alternative way to describe the same physics involves the density of particles,which can be conveniently defined if the system contains a large number of particles.The density is then proportional to the probability per unit volume per unit time.P(i,j,k,n) is the probability to find the at the site(i,j,k) at time n.

final13.gif

We can also get:

final14.gif

Considerate problem of one dimension diffusion

final16.gif

The finite-difference version of this is:

final17.gif

We get:


final20.gif

To guarantee numerical stability we must make sure that the space and time steps satisfy :

final15.gif

代码://www.greatytc.com/p/63160fa9c5e1

final18.gif
Diffusion_center.gif
Conclusion:

The graph of density is approximately to a Gaussian function. When time is enough long, the density is equal in the container.

3.Cluster growth models

The growth of clusters is closely related to random walks.
From Wikipedia, the free encyclopedia
The Eden growth model describes the growth of specific types of clusters such as bacterial colonies and deposition of materials. These clusters grow by random accumulation of material on their boundary. These are also an example of a surface fractal.The model is named after Murray Eden.
Diffusion-limited aggregation (DLA) is the process whereby particles undergoing a random walk due to Brownian motion cluster together to form aggregates of such particles. This theory ,is applicable to aggregation in any system where diffusion is the primary means of transport in the system.
The basic idea is: First, an initial particle is uesd as the seed. A particle is randomly generated at random locations away from the seed to make a random walk until it becomes a part of the group; and then generates a random particle, repeat the above process, so that you can get enough DLA clusters.

DLA_Cluster.jpg

Of7_p0001_15h.jpg

code://www.greatytc.com/p/c9f8c488e044

final9.gif
final10.gif
final11.gif
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,692评论 6 501
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,482评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,995评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,223评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,245评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,208评论 1 299
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,091评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,929评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,346评论 1 311
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,570评论 2 333
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,739评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,437评论 5 344
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,037评论 3 326
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,677评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,833评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,760评论 2 369
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,647评论 2 354

推荐阅读更多精彩内容

  • 冬季 我盼望一场雪 来净化我的灵魂 于是记忆的幽谷里 就有一颗童心复活 我原来仍是 扎着两只羊角的小丫头...
    湘中布衣秀才阅读 266评论 0 4
  • 这是第四次到丽江,周围人很不理解,为什么要一次次去同一个地方?按照某些人的说法,丽江我们去过了。如果真这样说,那中...
    茕蓁阅读 401评论 16 4
  • vue-cli的模板 vue-cli的脚手架项目模板有webpack-simple 和 webpack 两种的区别...
    前端小兵阅读 844评论 0 2
  • 童年的梦,是七彩的梦;童年的歌,是欢乐的歌;童年的脚印一串串;童年的故事一摞摞。童年的事就像天上的星星,数不清;童...
    新启航张老师阅读 528评论 0 4