Storm介绍之概念

什么是实时流计算?

       主要的处理模式可以分为:流处理,批处理

                流处理是直接处理,有时也分为在线,离线,近线(straight-through process)

                批处理是先存储后处理(store-process)

实时的流计算系统

      Yahoo的S4,S4是一个通用的,分布式的,可扩展的,分区容错的,可插拔的流式系统,主要是为了解决:搜索广告的展现、处理用户的点击反馈

    Facebook使用puma和hbase相结合来处理实时数据,使批处理计算平台具备一定实时计算能力,不过这不算是一个开源的产品,只是内部使用

Storm是什么?

       storm是一个分布式,高容错的实时计算系统,对数据实时计算提供了简单的spout和bolt原语

架构

                      

核心组件

          Storm的内核都是由clojure编写的(大部分扩展工作都是java编写的)

            Nimbus:负责资源分配和任务调度

           Supervisor:负责接收nimbus分配的任务,启动和停止属于自己管理的worker进程

           Worker:运行具体处理组件逻辑的进程,每个Worker都属于一个特定的Topology,每个supervisor节点的worker进程有多个,每个worker使用一个单独的端口,worker对Topology中的每个组件运行一个或多个Executor线程来提供Task的执行服务

          Topology:storm中运行的一个实时应用程序,类似于网络拓扑图的一种虚拟结构.Storm拓扑类似MapReduce任务,一个关键的区别是MapReduce任务运行一段时间后最终会完成,而Storm拓扑一直会运行(直到杀死它),一个Topology是由一组spout组件和Bolt组件组成的图

          Spout:在一个Topology中产生源数据的组件,向Topology中发出的Tuple可以是可靠的,也可以是不可靠的,一个可靠的数据源可以重新发射一个Tuple(如果该Tuple没有被Storm成功处理),但是一个不可靠的消息源Spout一旦发出,一个Tuple就把它彻底"遗忘",也就不可能再发了

         Bolt:消息的处理者,在一个Topology中接收数据然后执行处理的组件

                Bolt的生命周期:首先客户端创建Bolt,然后将其序列化,并提交给集群中的主机,之后集群启动Worker进程,反序列化Bolt,调用prepare方法开始处理元组,接下来,Bolt处理Tuple,Bolt处理一个输入Tuple,发射0个或多个Tuple,然后调用ack通知Storm自己已经处理过这个Tuple了,Storm提供了一个IBasicBolt自动调用ack,Bolt类接收由Spout或者其他上游Bolt类发来的Tuple,对其进行处理

        Tuple:一次消息传递的基本单元

               Tuple的生命周期:storm 通过调用spout的nextTuple方法来获取下一个Tuple,Spout通过open方法参数里面提供的SpoutOutputCollector来发射新tuple到它的其中一个输出消息流,发射tuple的时候spout会提供一个message-id,后面我们会通过这个tuple-id来追踪这个tuple

                   然后,这个发射的tuple被传送到消息处理者Bolt那里,storm会跟踪这个消息的树形结构是否创建,根据message-id调用spout那里的ack函数,以确认tuple是否被完全处理,如果tuple超时就会调用spout的fail方法

                  由此看出同一个tuple不管是acked还是fail都是由创建它的那个spout发出的,所以即使spout在集群环境中执行了很多的task,这个tuple也不会被其他任务调用或生成acked或failed状态,总之,Storm会利用内部的Acker机制保证每个Tuple被可靠地处理,最后,在任务完成后,Spout调用Close方法结束Tuple的使命

         Executor:

                产生于Worker进程内部的线程,会执行同一个组件的一个或者多个Task

       Task:worker中的每一个spout/bolt的线程称为一个Task

       Stream grouping:消息的分组方法

       Worker、Task、Executor三者之间的关系:

                  Worker是进程,Executor对应于线程,Spout或Bolt是一个个的Task;在Storm集群中的一个物理节点启动一个或者多个worker进程,集群中的Topology都是通过这些Worker进程进行的,Worker进程中又会运行一个或多个executor线程,每个Executor线程只运行一个Topology的一个组件(Spout/Bolt)的Task任务,Task又是数据处理的实体单元

                   同一个Worker只执行同一个Topology相关的Task;在同一个Executor中可以执行多个同类型的Task,即在同一个Executor中,要么全部都是Bolt类的Task,要么全是Spout类的Task;在运行时,Spout和Bolt需要包装成一个又一个的Task

                     

与hadoop角色对比

               

Storm数据交互图

              

Topology的提交流程图

                 


数据流模型

      Topology中,Spout是Stream的源头,负责为Topology从特定数据源发射Stream;Bolt可以接收任意多个Stream作为输入,然后进行数据的加工处理过程,如果需要,Bolt还可以发射出新的Stream给下级Bolt进行处理

           

      Stream消息流:Stream消息流是一个有向无界的Tuple序列,这些Tuple以分布式的方式并行地创建和处理,定义消息流主要是定义消息流的Tuple

     Stream:源源不断传递地tuple就组成了stream

     Stream Grouping 消息流

              Stream Grouping(消息流组)就是用来定义一个流如何分配Tuple到Bolt.Storm包括6种流分组类型

                1.随机分组(shuffle Grouping)

                   随机分发Tuple到Bolt的任务,保证每个任务获得相等数量的Tuple

                2.字段分组(Fields Grouping)

                    根据指定字段分割数据流,并分组.这种grouping机制保证相同field值的tuple会去同一个task.例如对于WordCount来说同一个单词会去同一个task

                3.全部分组(AllGrouping)

                     广播发送,将每一个Tuple发送到所有的Task.谨慎使用

               4.全局分组(GlobalGrouping)

                    所有的Tuple会被发送到某个Bolt中id最小的那个task

              5.无分组(NoneGrouping)

                  不关心Tuple发送给哪个Task来处理,等价于ShuffleGrouping

              6.直接分组(DirectGrouping)

                  直接将Tuple发送到指定的Task来处理

特点

            分布式简单

            运维简单

            高度容错

            无数据丢失

            多语言

            低延迟

            高性能

            可扩展


进入Storm安装部署以及API:Storm安装部署和API

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 198,030评论 5 464
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 83,198评论 2 375
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 144,995评论 0 327
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 52,973评论 1 268
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 61,869评论 5 359
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 46,766评论 1 275
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 36,967评论 3 388
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 35,599评论 0 254
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 39,886评论 1 293
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 34,901评论 2 314
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 36,728评论 1 328
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 32,504评论 3 316
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 37,967评论 3 302
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,128评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 30,445评论 1 255
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,018评论 2 343
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 41,224评论 2 339

推荐阅读更多精彩内容

  • Storm入门系列之一:storm核心概念及特性 本文的将介绍一些 storm 入门的基础知识,包括 storm ...
    zhaif阅读 3,033评论 0 17
  • 目录 场景假设 调优步骤和方法 Storm 的部分特性 Storm 并行度 Storm 消息机制 Storm UI...
    mtide阅读 16,984评论 30 60
  • 本文主要介绍storm中的基本概念,从基础上了解strom的体系结构,便于后续编程过程中作为基础指导。主要的概念包...
    看山远兮阅读 1,486评论 0 9
  • 这是一个JStorm使用教程,不包含环境搭建教程,直接在公司现有集群上跑任务,关于JStorm集群环境搭建,后续研...
    Coselding阅读 6,266评论 1 9
  • 刚才写了一篇读后感,一直发布失败,也就没有了再写一次的兴趣。 阳阳借给我一本林徽因传,预备开始看了。无聊的时候做的...
    瞳亻阅读 300评论 0 1