姓名:刘力菲 学号:19020100153
转自:嵌入式视觉技术_会飞的鸡毛110的博客-CSDN博客_嵌入式视觉
【嵌牛导读】 随着嵌入式技术的发展,嵌入式视觉技术也越来越比较重视,多年前。人们对嵌入式视觉技术的研究还是很模糊的,而在嵌入式视觉技术高度专业化应用的今天。越来越多的新兴工业为视觉应用找到了用武之地。那么就让我们谈谈如何使用嵌入式视觉技术、采用嵌入式视觉技术的理由以及近期哪些应用最有希望采用嵌入式视觉技术。
【嵌牛鼻子】视觉技术
【嵌牛提问】何为嵌入式视觉技术
【嵌牛正文】
更强处理能力
根据定义,嵌入式视觉系统实际上涵盖了执行图像信号处理算法或视觉系统控制软件的任何设备或系统。智能视觉系统中的关键部分是进行实时高清数字视频流处理的高性能计算引擎、大容量固态存储、智能摄像头或传感器以及高级分析算法。这些系统中的处理器可以执行图像采集、镜头校正、图像预处理和分割、目标分析以及各种启发式(heuristics)功能。嵌入式视觉系统设计工程师采用各种处理器,包括专为视觉应用设计的通用CPU、图象处理单元(GPU)、数字信号处理器(DSP)、现场可编程门阵列(FPGA)和专用标准产品(ASSP)。上述处理器架构具备明显的优势和短板。在许多情况下,设计工程师将多种处理器整合到一个异构计算环境中。有时候,处理器则被集成到一个组件中。此外,一些处理器使用专用硬件来尽可能实现最高的视觉算法性能。诸如FPGA之类的可编程平台为设计工程师提供了高度并行的计算密集型应用架构以及用于I/O扩展等其他应用的资源。
在摄像头方面,嵌入式视觉系统设计工程师使用模拟摄像头和数字图像传感器。数字图像传感器通常是需要可见光环境的CCD或CMOS传感器阵列。嵌入式视觉系统也可用于感测其他数据,如红外、超声波、雷达和激光雷达。
越来越多的设计工程师开始转向采用摄像头或各种传感器的“智能摄像头”作为视觉系统中所有边缘电子设备的核心。其他系统将传感器数据传输到云端以减少系统处理器的负载,在这个过程中系统功耗、占用空间和成本降至最低。但是,当需要基于图像传感器数据进行低延迟的关键决策时,这种方法将面临问题。
利用移动优势
尽管嵌入式视觉解决方案早已面市多年,但该技术的发展速度受到了很多因素的限制。首先也是最重要的是,这项技术的关键要素仍没有能够以低成本的方式实现。特别是能够实时处理高清数字视频流的计算引擎尚未普及。高容量固态存储和高级分析算法的限制也带来了挑战。
最近市场上的三种发展趋势有望彻底改变嵌入式视觉系统的面貌。首先,移动市场的高速发展为嵌入式视觉设计工程师提供了海量的处理器可选方案,能够以低功耗提供相对较高的性能。其次,MIPI联盟推出的移动行业处理器接口(MIPI)能够为设计工程师提供替代方案,使用符合标准的硬件和软件组件来构建创新且具有成本效益的嵌入式视觉解决方案。最后,针对移动应用的低成本传感器和摄像头的激增,帮助嵌入式视觉系统设计工程师实现更好的解决方案并降低成本。
工业应用
工业应用领域中的机器视觉系统一直以来都是嵌入式视觉领域最有前景的应用方向之一。机器视觉技术是其中最成熟和数量最多的应用。它被广泛用于制造过程和质量管理应用。通常,这些应用领域中的制造商采用由一个或多个智能摄像头与处理器模块组成的紧凑型视觉系统。Transparency Market Research的分析师预测,机器视觉市场将从2014年的157亿美元增长至285亿美元(2021年)。
人类很早已经认识到,光靠肉眼的观察东西是有限的,肉眼之外还有许多我们无法观察到的东西,所以人类一直研究一种技术能够替代和弥补我们肉眼的缺陷。而现在人类已经研究出以嵌入式视觉的产品走进了我们的生活。但至今为止嵌入式视觉系统并不成熟,这还需要我们现在的年轻人以及我们的后代进一步研究和突破。
————————————————
版权声明:本文为CSDN博主「会飞的鸡毛110」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/qq_32764059/article/details/80944000
来源:CSDN
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。