1. numpy.broadcast_to
此函数将数组广播到新形状。 它在原始数组上返回只读视图。 它通常不连续。 如果新形状不符合 NumPy 的广播规则,该函数可能会抛出ValueError
。
注意 - 此功能可用于 1.10.0 及以后的版本。
该函数接受以下参数。
numpy.broadcast_to(array, shape, subok)
例子
import numpy as np
a = np.arange(4).reshape(1,4)
print '原数组:'
print a
print '\n'
print '调用 broadcast_to 函数之后:'
print np.broadcast_to(a,(4,4))
输出如下:
[[0 1 2 3]
[0 1 2 3]
[0 1 2 3]
[0 1 2 3]]
2. numpy.expand_dims
函数通过在指定位置插入新的轴来扩展数组形状。该函数需要两个参数:
numpy.expand_dims(arr, axis)
其中:
-
arr
:输入数组 -
axis
:新轴插入的位置
例子
import numpy as np
x = np.array(([1,2],[3,4]))
print '数组 x:'
print x
print '\n'
y = np.expand_dims(x, axis = 0)
print '数组 y:'
print y
print '\n'
print '数组 x 和 y 的形状:'
print x.shape, y.shape
print '\n'
# 在位置 1 插入轴
y = np.expand_dims(x, axis = 1)
print '在位置 1 插入轴之后的数组 y:'
print y
print '\n'
print 'x.ndim 和 y.ndim:'
print x.ndim,y.ndim
print '\n'
print 'x.shape 和 y.shape:'
print x.shape, y.shape
输出如下:
数组 x:
[[1 2]
[3 4]]
数组 y:
[[[1 2]
[3 4]]]
数组 x 和 y 的形状:
(2, 2) (1, 2, 2)
在位置 1 插入轴之后的数组 y:
[[[1 2]]
[[3 4]]]
x.shape 和 y.shape:
2 3
x.shape and y.shape:
(2, 2) (2, 1, 2)
(source)