凸优化(四)——问题求解

〇、说明

凸优化主要学习《凸优化》(Stephen Boyd等著,王书宁等译)[1]这本书。学习过程中,对其内容的理解时有困惑,也参考一些其他书籍资料。笔者尽量将这部分知识整理地简洁明了,成此系列笔记。

如有错误疏漏,烦请指出。如要转载,请联系笔者,hpfhepf@gmail.com。

一、凸优化的优势

凸优化之所以如此重要,是因为凸优化的重要特性:凸优化的任意局部最优解也是全局最优解

二、最优性准则

2.1、无约束凸优化的最优性准则

2.2、等式约束凸优化的最优化准则

三、无约束凸优化问题求解

3.1、解析解

对于少数一些简单的凸优化问题,可以利用最优性准则通过解析来求解。但对于大多数凸优化问题来讲,是没有办法通过解析来求解的。

3.2、下降方法

下降方法中,有两个问题需要解决:确定搜索步长和确定搜索方向。确定搜索步长的方法和算法有:固定步长搜索精确直线搜索回溯直线搜索。确定搜索方向的方法和算法有:梯度下降方法最速下降方法牛顿法。

3.3、确定步长的方法

1、固定步长搜索

步长值根据经验设定,为了防止算法震荡,值应当较小。优点:直观、简单;缺点:收敛速度慢。

2、精确直线搜索

3、回溯直线搜索

比较常用的是回溯直线搜索,大概思路是,用迭代方法求得的步长只要能使目标函数有足够的减少即可。详见《凸优化(五)——回溯直线搜索》。

3.4、调整搜索方向的方法

1、梯度下降方法

2、最速下降方法

利用目标函数的一阶泰勒展开近似优化过程,进而确定学习方向。详见《凸优化(六)——最速下降法》。

3、牛顿法

利用目标函数的二阶泰勒展开近似表示目标函数,通过求解这个二次函数的极小值来确定搜索方向。详见《凸优化(七)——牛顿法》。

四、等式约束凸优化问题求解

4.1、通过消除等式求解

任何等式约束优化问题都可以通过消除等式约束转化为等价的无约束优化问题,然后利用无约束的方法求解。

4.2、通过Lagrange对偶问题求解

利用无约束优化问题求解对偶问题,然后从对偶解中复原等式约束问题的解。详见《凸优化(八)——Lagrange对偶问题》。

4.3、等式约束的牛顿法

详见《凸优化(七)——牛顿法》。

五、不等式约束凸优化问题求解

5.1、通过Lagrange对偶问题求解

利用无约束优化问题求解对偶问题,然后从对偶解中复原不等式约束问题的解。《凸优化(八)——Lagrange对偶问题》。

5.2、内点法

主要思路:引进的惩罚函数的在可行域的边界上设置障碍,使求解的迭代过程始终在可行域内部进行。[2]

这里暂不详述,待有时间再学习整理。

附录

A、参考

[1]、《凸优化》,Stephen Boyd等著,王书宁等译

[2]、《什么是内点法》

B、相关目录

凸优化(一)——概述

凸优化(二)——凸集

凸优化(三)——凸函数

凸优化(四)——问题求解

凸优化(五)——回溯直线搜索

凸优化(六)——最速下降法

凸优化(七)——牛顿法

凸优化(八)——Lagrange对偶问题

C、时间线

2016-02-29 第一次发布

2016-08-07 修改文章名,重新整理完善


最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 211,123评论 6 490
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,031评论 2 384
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 156,723评论 0 345
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,357评论 1 283
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,412评论 5 384
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,760评论 1 289
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,904评论 3 405
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,672评论 0 266
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,118评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,456评论 2 325
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,599评论 1 340
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,264评论 4 328
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,857评论 3 312
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,731评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,956评论 1 264
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,286评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,465评论 2 348

推荐阅读更多精彩内容