使用ArchR分析单细胞ATAC-seq数据(第五章)

本文首发于我的个人博客, http://xuzhougeng.top/

往期回顾:

第5章: 使用ArchR聚类

大部分单细胞聚类算法都在降维后空间中计算最近邻图,然后鉴定"社区"或者细胞聚类。这些方法效果表现都特别出色,已经是scRNA-seq的标准策略,所以ArchR直接使用了目前scRNA-seq包中最佳的聚类算法用来对scATAC-seq数据进行聚类。

5.1 使用Seurat的FindClusters()函数进行聚类

我们发现Seurat实现的图聚类方法表现最好,所以在ArchR中,addClusters()函数本质是上将额外的参数通过...传递给Seurat::FindClusters()函数,从而得到聚类结果。在分析中,我们发现Seurat::FindClusters()是一个确定性的聚类算法,也就是相同的输入总是能得到完全相同的输出。

projHeme2 <- addClusters(
    input = projHeme2,
    reducedDims = "IterativeLSI",
    method = "Seurat",
    name = "Clusters",
    resolution = 0.8
)
# 只展示部分信息
# Maximum modularity in 10 random starts: 0.8568
# Number of communities: 11
# Elapsed time: 1 seconds

我们可以使用$符号来获取聚类信息,输出结果是每个细胞对应的cluster

head(projHeme2$Clusters)
# [1] "C10" "C6"  "C1"  "C2"  "C2"  "C10"

我们统计下每个cluster的细胞数

table(projHeme2$Clusters)
#  C1  C10  C11   C2   C3   C4   C5   C6   C7   C8   C9 
# 310 1247 1436  480  323  379  852 1271  677 2550  726 

为了更好了解样本在cluster的分布,我们可以使用confusionMatrix()函数通过每个样本创建一个聚类混合矩阵(cluster confusion matrix)

从结果来看,这里的混合矩阵就是统计每个样本在不同的cluster的分布情况。

cM <- confusionMatrix(paste0(projHeme2$Clusters), paste0(projHeme2$Sample))
cM

文字信息太多,这里直接用热图进行展示

library(pheatmap)
cM <- cM / Matrix::rowSums(cM)
p <- pheatmap::pheatmap(
    mat = as.matrix(cM), 
    color = paletteContinuous("whiteBlue"), 
    border_color = "black"
)
p
混合矩阵

细胞有时在二维嵌入中的相对位置与所识别的聚类并不完全一致。更确切的说,单个聚类中的细胞可能出现在嵌入的多个不同区域中。在这些情况下,可以适当地调整聚类参数或嵌入参数,直到两者之间达成一致。

5.2 使用scran聚类

除了Seurat, ArchR还能够使用scran进行聚类分析,我们只需要修改addClusters()中的method参数即可。

projHeme2 <- addClusters(
    input = projHeme2,
    reducedDims = "IterativeLSI",
    method = "scran",
    name = "ScranClusters",
    k = 15
)
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,723评论 6 481
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,485评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 152,998评论 0 344
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,323评论 1 279
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,355评论 5 374
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,079评论 1 285
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,389评论 3 400
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,019评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,519评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,971评论 2 325
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,100评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,738评论 4 324
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,293评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,289评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,517评论 1 262
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,547评论 2 354
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,834评论 2 345