图解TCP:三次握手,四次挥手

什么是“三次握手,四次挥手”?

TCP 是一种面向连接的单播协议,在发送数据前,通信双方必须在彼此间建立一条连接。

所谓的“连接”,其实是客户端和服务器的内存里保存的一份关于对方的信息,如 IP 地址、端口号等。

TCP 可以看成是一种字节流,它会处理 IP 层或以下的层的丢包、重复以及错误问题。

在连接的建立过程中,双方需要交换一些连接的参数。这些参数可以放在 TCP 头部。

TCP 提供了一种可靠、面向连接、字节流、传输层的服务:

  • 采用三次握手建立一个连接;
  • 采用四次挥手来关闭一个连接。

TCP运输连接的三个阶段:

  • 连接建立。
  • 数据传送。
  • 连接释放。

三次握手

三次握手就好比两个人在街上隔着50米看见了对方,但是因为雾霾等原因不能100%确认,所以要通过招手的方式相互确定对方是否认识自己。

张三首先向李四招手(syn),李四看到张三向自己招手后,向对方点了点头挤出了一个微笑(ack)。

张三看到李四微笑后确认了李四成功辨认出了自己(进入estalished状态)。

但是李四还有点狐疑,向四周看了一看,有没有可能张三是在看别人呢,他也需要确认一下。

所以李四也向张三招了招手(syn),张三看到李四向自己招手后知道对方是在寻求自己的确认,于是也点了点头挤出了微笑(ack),李四看到对方的微笑后确认了张三就是在向自己打招呼(进入established状态)。

于是两人加快步伐,走到了一起,相互拥抱。

我们看到这个过程中一共是四个动作:张三招手--李四点头微笑--李四招手--张三点头微笑。其中李四连续进行了2个动作,先是点头微笑(回复对方),然后再次招手(寻求确认),实际上可以将这两个动作合一,招手的同时点头和微笑(syn+ack)。于是四个动作就简化成了三个动作,张三招手--李四点头微笑并招手--张三点头微笑。这就是三次握手的本质,中间的一次动作是两个动作的合并。

我们看到有两个中间状态,syn_sent和syn_rcvd,这两个状态叫着「半打开」状态,就是向对方招手了,但是还没来得及看到对方的点头微笑。syn_sent是主动打开方的「半打开」状态,syn_rcvd是被动打开方的「半打开」状态。客户端是主动打开方,服务器是被动打开方。

数据传输

TCP 数据传输就是两个人隔空对话,差了一点距离,所以需要对方反复确认听见了自己的话。

张三喊了一句话(data),李四听见了之后要向张三回复自己听见了(ack)。

如果张三喊了一句,半天没听到李四回复,张三就认为自己的话被大风吹走了,李四没听见,所以需要重新喊话,这就是tcp重传。

也有可能是李四听到了张三的话,但是李四向张三的回复被大风吹走了,以至于张三没听见李四的回复。张三并不能判断究竟是自己的话被大风吹走了还是李四的回复被大风吹走了,张三也不用管,重传一下就是。

既然会重传,李四就有可能同一句话听见了两次,这就是「去重」。「重传」和「去重」工作操作系统的网络内核模块都已经帮我们处理好了,用户层是不用关心的。

张三可以向李四喊话,同样李四也可以向张三喊话,因为tcp链接是「双工的」,双方都可以主动发起数据传输。不过无论是哪方喊话,都需要收到对方的确认才能认为对方收到了自己的喊话。

张三可能是个高射炮,一说连说了八句话,这时候李四可以不用一句一句回复,而是连续听了这八句话之后,一起向对方回复说前面你说的八句话我都听见了,这就是批量ack。但是张三也不能一次性说了太多话,李四的脑子短时间可能无法消化太多,两人之间需要有协商好的合适的发送和接受速率,这个就是「TCP窗口大小」。

网络环境的数据交互同人类之间的对话还要复杂一些,它存在数据包乱序的现象。同一个来源发出来的不同数据包在「网际路由」上可能会走过不同的路径,最终达到同一个地方时,顺序就不一样了。操作系统的网络内核模块会负责对数据包进行排序,到用户层时顺序就已经完全一致了。

四次挥手

TCP断开链接的过程和建立链接的过程比较类似,只不过中间的两部并不总是会合成一步走,所以它分成了4个动作,张三挥手(fin)——李四伤感地微笑(ack)——李四挥手(fin)——张三伤感地微笑(ack)。

之所以中间的两个动作没有合并,是因为tcp存在「半关闭」状态,也就是单向关闭。张三已经挥了手,可是人还没有走,只是不再说话,但是耳朵还是可以继续听,李四呢继续喊话。等待李四累了,也不再说话了,超张三挥了挥手,张三伤感地微笑了一下,才彻底结束了。

上面有一个非常特殊的状态time_wait,它是主动关闭的一方在回复完对方的挥手后进入的一个长期状态,这个状态标准的持续时间是4分钟,4分钟后才会进入到closed状态,释放套接字资源。不过在具体实现上这个时间是可以调整的。

它就好比主动分手方要承担的责任,是你提出的要分手,你得付出代价。这个后果就是持续4分钟的time_wait状态,不能释放套接字资源(端口),就好比守寡期,这段时间内套接字资源(端口)不得回收利用。

它的作用是重传最后一个ack报文,确保对方可以收到。因为如果对方没有收到ack的话,会重传fin报文,处于time_wait状态的套接字会立即向对方重发ack报文。

同时在这段时间内,该链接在对话期间于网际路由上产生的残留报文(因为路径过于崎岖,数据报文走的时间太长,重传的报文都收到了,原始报文还在路上)传过来时,都会被立即丢弃掉。4分钟的时间足以使得这些残留报文彻底消逝。不然当新的端口被重复利用时,这些残留报文可能会干扰新的链接。

4分钟就是2个MSL,每个MSL是2分钟。MSL就是maximium segment lifetime——最长报文寿命。这个时间是由官方RFC协议规定的。至于为什么是2个MSL而不是1个MSL,我还没有看到一个非常满意的解释。

四次挥手也并不总是四次挥手,中间的两个动作有时候是可以合并一起进行的,这个时候就成了三次挥手,主动关闭方就会从fin_wait_1状态直接进入到time_wait状态,跳过了fin_wait_2状态。

为什么要“三次握手,四次挥手”?

三次握手

客户端和服务端通信前要进行连接,三次握手的作用就是双方都能明确自己和对方的收、发能力是正常的:

第一次握手:客户端发送网络包,服务端收到了。这样服务端就能得出结论:客户端的发送能力、服务端的接收能力是正常的。

第二次握手:服务端发包,客户端收到了。这样客户端就能得出结论:服务端的接收、发送能力,客户端的接收、发送能力是正常的。

从客户端的视角来看,我接到了服务端发送过来的响应数据包,说明服务端接收到了我在第一次握手时发送的网络包,并且成功发送了响应数据包,这就说明,服务端的接收、发送能力正常。

而另一方面,我收到了服务端的响应数据包,说明我第一次发送的网络包成功到达服务端,这样,我自己的发送和接收能力也是正常的。

第三次握手:客户端发包,服务端收到了。这样服务端就能得出结论:客户端的接收、发送能力,服务端的发送、接收能力是正常的。

第一、二次握手后,服务端并不知道客户端的接收能力以及自己的发送能力是否正常。

而在第三次握手时,服务端收到了客户端对第二次握手作的回应。从服务端的角度,我在第二次握手时的响应数据发送出去了,客户端接收到了。所以,我的发送能力是正常的。而客户端的接收能力也是正常的。

经历了上面的三次握手过程,客户端和服务端都确认了自己的接收、发送能力是正常的。

之后就可以正常通信了。

四次挥手

TCP 连接是双向传输的对等的模式,就是说双方都可以同时向对方发送或接收数据。

当有一方要关闭连接时,会发送指令告知对方,我要关闭连接了。这时对方会回一个 ACK,此时一个方向的连接关闭。

但是另一个方向仍然可以继续传输数据,等到发送完了所有的数据后,会发送一个 FIN 段来关闭此方向上的连接。接收方发送 ACK 确认关闭连接。

注意,接收到 FIN 报文的一方只能回复一个 ACK, 它是无法马上返回对方一个 FIN 报文段的,因为结束数据传输的“指令”是上层应用层给出的,我只是一个“搬运工”,我无法了解“上层的意志”。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 195,898评论 5 462
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 82,401评论 2 373
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 143,058评论 0 325
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 52,539评论 1 267
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 61,382评论 5 358
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 46,319评论 1 273
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 36,706评论 3 386
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 35,370评论 0 254
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 39,664评论 1 294
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 34,715评论 2 312
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 36,476评论 1 326
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 32,326评论 3 313
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 37,730评论 3 299
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,003评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 30,275评论 1 251
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 41,683评论 2 342
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 40,877评论 2 335

推荐阅读更多精彩内容