1 AOL算子库
CANN(Compute Architecture for Neural Networks)提供了算子加速库(Ascend Operator Library,简称AOL)。该库提供了一系列丰富且深度优化过的高性能算子API,更亲和昇腾AI处理器,调用流程如图1所示。开发者可直接调用算子库API使能模型创新与应用,以进一步提升开发效率和获取极致模型性能。
单算子API执行的算子接口一般定义为“两段式接口”,以NN算子接口定义为例:
aclnnStatus aclnnXxxGetWorkspaceSize(const aclTensor *src, ..., aclTensor *out, ..., uint64_t *workspaceSize, aclOpExecutor **executor);
aclnnStatus aclnnXxx(void *workspace, uint64_t workspaceSize, aclOpExecutor *executor, aclrtStream stream);
其中aclnnXxxGetWorkspaceSize为第一段接口,主要用于计算本次API调用计算过程中需要多少的workspace内存。获取到本次API计算需要的workspace大小后,按照workspaceSize大小申请AI处理器内存,然后调用第二段接口aclnnXxx。
说明:
- workspace是指除输入/输出外,API在AI处理器上完成计算所需要的临时内存。
- 第二段接口aclnnXxx(...)不能重复调用,如下调用方式会出现异常:
aclnnXxxGetWorkspaceSize(...)
aclnnXxx(...)
aclnnXxx(...)
2 具体示例
2.1 文件准备
可以从官网获得一个算子的使用示例,如下算子是aclnnAdd:
#include <iostream>
#include <vector>
#include "acl/acl.h"
#include "aclnnop/aclnn_add.h"
#define CHECK_RET(cond, return_expr) \
do { \
if (!(cond)) { \
return_expr; \
} \
} while (0)
#define LOG_PRINT(message, ...) \
do { \
printf(message, ##__VA_ARGS__); \
} while (0)
int64_t GetShapeSize(const std::vector<int64_t>& shape) {
int64_t shapeSize = 1;
for (auto i : shape) {
shapeSize *= i;
}
return shapeSize;
}
int Init(int32_t deviceId, aclrtStream* stream) {
// 固定写法,AscendCL初始化
auto ret = aclInit(nullptr);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret);
ret = aclrtSetDevice(deviceId);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret);
ret = aclrtCreateStream(stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret);
return 0;
}
template <typename T>
int CreateAclTensor(const std::vector<T>& hostData, const std::vector<int64_t>& shape, void** deviceAddr,
aclDataType dataType, aclTensor** tensor) {
auto size = GetShapeSize(shape) * sizeof(T);
// 调用aclrtMalloc申请device侧内存
auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret);
// 调用aclrtMemcpy将host侧数据拷贝到device侧内存上
ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret);
// 计算连续tensor的strides
std::vector<int64_t> strides(shape.size(), 1);
for (int64_t i = shape.size() - 2; i >= 0; i--) {
strides[i] = shape[i + 1] * strides[i + 1];
}
// 调用aclCreateTensor接口创建aclTensor
*tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND,
shape.data(), shape.size(), *deviceAddr);
return 0;
}
int main() {
// 1. (固定写法)device/stream初始化,参考AscendCL对外接口列表
// 根据自己的实际device填写deviceId
int32_t deviceId = 0;
aclrtStream stream;
auto ret = Init(deviceId, &stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret);
// 2. 构造输入与输出,需要根据API的接口自定义构造
std::vector<int64_t> selfShape = {4, 2};
std::vector<int64_t> otherShape = {4, 2};
std::vector<int64_t> outShape = {4, 2};
void* selfDeviceAddr = nullptr;
void* otherDeviceAddr = nullptr;
void* outDeviceAddr = nullptr;
aclTensor* self = nullptr;
aclTensor* other = nullptr;
aclScalar* alpha = nullptr;
aclTensor* out = nullptr;
std::vector<float> selfHostData = {0, 1, 2, 3, 4, 5, 6, 7};
std::vector<float> otherHostData = {1, 1, 1, 2, 2, 2, 3, 3};
std::vector<float> outHostData(8, 0);
float alphaValue = 1.2f;
// 创建self aclTensor
ret = CreateAclTensor(selfHostData, selfShape, &selfDeviceAddr, aclDataType::ACL_FLOAT, &self);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 创建other aclTensor
ret = CreateAclTensor(otherHostData, otherShape, &otherDeviceAddr, aclDataType::ACL_FLOAT, &other);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 创建alpha aclScalar
alpha = aclCreateScalar(&alphaValue, aclDataType::ACL_FLOAT);
CHECK_RET(alpha != nullptr, return ret);
// 创建out aclTensor
ret = CreateAclTensor(outHostData, outShape, &outDeviceAddr, aclDataType::ACL_FLOAT, &out);
CHECK_RET(ret == ACL_SUCCESS, return ret);
uint64_t workspaceSize = 0;
aclOpExecutor* executor;
// aclnnAdd接口调用示例
// 3. 调用CANN算子库API
// 调用aclnnAdd第一段接口
ret = aclnnAddGetWorkspaceSize(self, other, alpha, out, &workspaceSize, &executor);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnAddGetWorkspaceSize failed. ERROR: %d\n", ret); return ret);
// 根据第一段接口计算出的workspaceSize申请device内存
void* workspaceAddr = nullptr;
if (workspaceSize > 0) {
ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret);
}
// 调用aclnnAdd第二段接口
ret = aclnnAdd(workspaceAddr, workspaceSize, executor, stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnAdd failed. ERROR: %d\n", ret); return ret);
// 4. (固定写法)同步等待任务执行结束
ret = aclrtSynchronizeStream(stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret);
// 5. 获取输出的值,将device侧内存上的结果拷贝至host侧,需要根据具体API的接口定义修改
auto size = GetShapeSize(outShape);
std::vector<float> resultData(size, 0);
ret = aclrtMemcpy(resultData.data(), resultData.size() * sizeof(resultData[0]), outDeviceAddr,
size * sizeof(resultData[0]), ACL_MEMCPY_DEVICE_TO_HOST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret);
for (int64_t i = 0; i < size; i++) {
LOG_PRINT("result[%ld] is: %f\n", i, resultData[i]);
}
// aclnnInplaceAdd接口调用示例
// 3. 调用CANN算子库API
LOG_PRINT("\ntest aclnnInplaceAdd\n");
// 调用aclnnInplaceAdd第一段接口
ret = aclnnInplaceAddGetWorkspaceSize(self, other, alpha, &workspaceSize, &executor);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnInplaceAddGetWorkspaceSize failed. ERROR: %d\n", ret); return ret);
// 根据第一段接口计算出的workspaceSize申请device内存
if (workspaceSize > 0) {
ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret);
}
// 调用aclnnInplaceAdd第二段接口
ret = aclnnInplaceAdd(workspaceAddr, workspaceSize, executor, stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnInplaceAdd failed. ERROR: %d\n", ret); return ret);
// 4. (固定写法)同步等待任务执行结束
ret = aclrtSynchronizeStream(stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret);
// 5. 获取输出的值,将device侧内存上的结果拷贝至host侧,需要根据具体API的接口定义修改
ret = aclrtMemcpy(resultData.data(), resultData.size() * sizeof(resultData[0]), selfDeviceAddr,
size * sizeof(resultData[0]), ACL_MEMCPY_DEVICE_TO_HOST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret);
for (int64_t i = 0; i < size; i++) {
LOG_PRINT("result[%ld] is: %f\n", i, resultData[i]);
}
// 6. 释放aclTensor和aclScalar,需要根据具体API的接口定义修改
aclDestroyTensor(self);
aclDestroyTensor(other);
aclDestroyScalar(alpha);
aclDestroyTensor(out);
// 7. 释放Device资源,需要根据具体API的接口定义修改
aclrtFree(selfDeviceAddr);
aclrtFree(otherDeviceAddr);
aclrtFree(outDeviceAddr);
if (workspaceSize > 0) {
aclrtFree(workspaceAddr);
}
aclrtDestroyStream(stream);
aclrtResetDevice(deviceId);
aclFinalize();
return 0;
}
如果将该文件命名为test_add.cpp,那么接下来写它的CMakeLists文件,可从如下模板中修改。
重要内容修改:
- add_executable中的文件名称,比如当前要改成test_add.cpp
# Copyright (c) Huawei Technologies Co., Ltd. 2019. All rights reserved.
# CMake lowest version requirement
cmake_minimum_required(VERSION 3.14)
# 设置工程名
project(ACLNN_EXAMPLE)
# Compile options
add_compile_options(-std=c++11)
# 设置编译选项
set(CMAKE_RUNTIME_OUTPUT_DIRECTORY "./bin")
set(CMAKE_CXX_FLAGS_DEBUG "-fPIC -O0 -g -Wall")
set(CMAKE_CXX_FLAGS_RELEASE "-fPIC -O2 -Wall")
# 设置可执行文件名(如opapi_test),并指定待运行算子文件*.cpp所在目录
add_executable(opapi_test
test_add.cpp)
# 设置ASCEND_PATH(CANN软件包目录,请根据实际路径修改)和INCLUDE_BASE_DIR(头文件目录)
if(NOT "$ENV{ASCEND_CUSTOM_PATH}" STREQUAL "")
set(ASCEND_PATH $ENV{ASCEND_CUSTOM_PATH})
else()
set(ASCEND_PATH "/usr/local/Ascend/ascend-toolkit/latest")
endif()
set(INCLUDE_BASE_DIR "${ASCEND_PATH}/include")
include_directories(
${INCLUDE_BASE_DIR}
${INCLUDE_BASE_DIR}/aclnn
)
# 设置链接的库文件路径
target_link_libraries(opapi_test PRIVATE
${ASCEND_PATH}/lib64/libascendcl.so
${ASCEND_PATH}/lib64/libnnopbase.so
${ASCEND_PATH}/lib64/libopapi.so)
# 可执行文件在CMakeLists文件所在目录的bin目录下
install(TARGETS opapi_test DESTINATION ${CMAKE_RUNTIME_OUTPUT_DIRECTORY})
2.2 编译运行
1、进入CMakeLists.txt所在目录,执行如下命令,新建build目录存放生成的编译文件。执行:
source ${install_path}/set_env.sh。#install_path为CANN的安装目录,一般为/usr/local/Ascend/ascend-toolkit/latest
2、进入build目录,执行cmake命令编译,再执行make命令生成可执行文件。
cd build
cmake ../ -DCMAKE_CXX_COMPILER=g++ -DCMAKE_SKIP_RPATH=TRUE
make
编译成功后,会在build目录的bin文件夹下生成opapi_test可执行文件。
3、进入bin目录,运行可执行文件opapi_test。
cd bin
./opapi_test
以Add算子的运行结果为例,运行后的结果示例如下:
result[0] is: 1.200000
result[1] is: 2.200000
result[2] is: 3.200000
result[3] is: 5.400000
result[4] is: 6.400000
result[5] is: 7.400000
result[6] is: 9.600000
result[7] is: 10.600000
可参考官网: