二分模板
def search(arr, v)
{
left = 0, right = len(arr) - 1 #左闭右闭 right是最右边数组下标
while (left <= right): # 左闭右闭 小于等于
middle = left + (right-left) // 2;
if (array[middle] > v):
right = middle - 1;#左闭右闭 right = mid + 1
elif (array[middle] < v):
left = middle + 1;#左闭右闭 right = mid - 1
else:
return middle
经典例题
14. 最长公共前缀
def longestCommonPrefix(self, strs: List[str]) -> str:
def isCommonPrefix(length):
str0, count = strs[0][:length], len(strs)
for i in range(1,count):
if str0 != strs[i][:length]:
return False
return True
#python语法糖简洁写法
#return all(strs[i][:length] == str0 for i in range(1, count))
if not strs:
return ""
minLength = min(len(s) for s in strs)
low, high = 0, minLength
while low < high:
mid = (high - low + 1) // 2 + low
if isCommonPrefix(mid):
low = mid
else:
high = mid - 1
return strs[0][:low]
35题 - 搜索插入位置 == 实现 bisect.bisect_left
def searchInsert(self, nums: List[int], target: int) -> int:
l,r = 0,len(nums)-1
while(l<=r):
mid = (l+r)//2
if target <= nums[mid]:
r = mid - 1
else:
l = mid + 1
return l
169. 多数元素
可以看到分治法的思路,但是效率确实一般,基本在100ms以上
def majorityElement(self, nums: List[int]) -> int:
if not nums:
return None
if(len(nums)==1):
return nums[0]
left = self.majorityElement(nums[:len(nums)//2])
right = self.majorityElement(nums[len(nums)//2:])
if(left==right):
return left
if(nums.count(left)>nums.count(right)):
return left
else:
return right
如果用python自带的方法,可以发小基本在50ms左右,这是为啥呢??
def majorityElement(self, nums: List[int]) -> int:
return collections.Counter(nums).most_common()[0][0]
如果去查看most_common的源码,会发现用了堆
def most_common(self, n=None):
if n is None:
return sorted(self.items(), key=_itemgetter(1), reverse=True)
return _heapq.nlargest(n, self.items(), key=_itemgetter(1))
nlargest和nsmallest可以帮助我们在某个集合中找出最大或最小的N个元素
>>> import heapq
>>> nums=[1,8,2,23,7,-4,18,23,42,37,2]
>>> print(heapq.nlargest(3,nums))
[42, 37, 23]
>>> print(heapq.nsmallest(3,nums))
[-4, 1, 2]
53. 最大子序和
这道题之前做过,已经是O(n)的算法,
def maxSubArray(self, nums: List[int]) -> int:
res, tmp = nums[0], 0
for num in nums:
tmp = max(num, tmp+num)
res = max(res, tmp)
return res
这里我们结合DW用更为巧妙的分治法
def maxSubArray(self, nums: List[int]) -> int:
if not nums:
return None
if(len(nums)==1):
return nums[0]
l,ltmp,rtmp = len(nums),0,0
left = self.maxSubArray(nums[:l//2])
right = self.maxSubArray(nums[l//2:])
maxleft,maxright = nums[l//2-1],nums[l//2] #左区间最右值 和 右区间最左值
for i in range(l//2-1,-1,-1):#从右向左遍历左区间
ltmp += nums[i]
maxleft = max(maxleft,ltmp)
for j in range(l//2,l):#从左向右遍历右区间
rtmp += nums[j]
maxright = max(maxright,rtmp)
return max(left,right,maxleft+maxright)
不过分治法的速度好像是不太行啊,100ms以上
50. Pow(x, n)
这个分治法的效率还行,
def myPow(self, x: float, n: int) -> float:
if(n==0):
return 1
if(n<0):
x=1/x
n=-n
if (n%2==1):
p = x*self.myPow(x, n-1)
return p
return self.myPow(x*x, n/2)
之前做过这道题,但是快速幂的方法是通过位运算实现的
def myPow(self, x: float, n: int) -> float:
if x == 0.0: return 0.0
res = 1
if n < 0: x, n = 1 / x, -n
while n:
if n & 1: res *= x
x *= x
n >>= 1 #这里位运算速度要更快
return res
1. 287. 寻找重复数
def findDuplicate(self, nums: List[int]) -> int:
l, r = 1, len(nums) - 1
while l < r:
mid = (l+r)//2
count = 0
for num in nums:
if num <= mid:
count += 1
#下面这块逻辑要注意下 原来少想了一种情况
#count 是有可能比mid小的 比如 [1,2,4,4] 比4小的只有两个元素
#所以这里其实条件是:小于等于mid的元素的数量小于或者等于mid 说明重复的元素在mid后面
#反过来理解就是 count > mid 说明重复元素一定在mid前面(包含mid)
if count > mid:
r = mid
else:
l = mid + 1
return l
2 .875. 爱吃香蕉的珂珂
还是二分查找的典型应用,
def minEatingSpeed(self, piles: List[int], H: int) -> int:
if len(piles) >= H:
return max(piles)
avg = sum(piles) // H
l = 1 if not avg else avg #注意这里要对做0判断,最少为1
r = max(piles)
while l < r:
hour, mid = 0, (l+r)//2
for pile in piles:
if pile <= mid:
hour +=1
else:
hour += (pile//mid + 1)
if hour <= H: #这里注意下是小于等于,经过二分查找后low一直向右移动到了我们需要的位置,所以返回 low
r = mid
else:
l = mid + 1
return l
6 . 69. x 的平方根
平方根的二分查找法
def mySqrt(self, x: int) -> int:
l,r,ans = 0,x,-1
while(l<=r):
mid = (l+r)//2
if mid*mid <= x:
ans = mid
l = mid + 1
else:
r = mid - 1
return ans
3. 剑指 Offer 53 - II. 0~n-1中缺失的数字
这个题目要读懂题目的意思,搞清楚边界条件
用下面这种思路,考虑缺少首尾的情况
for i in range(0,len(nums)-1):
if(nums[i+1]-nums[i]==2):
return nums[i]+1
return len(nums) if nums[0]==0 else 0
这个题目从官方给的思路,应该用二分法,任何排序中的查找问题,都要想到用二分法!!
def missingNumber(self, nums: List[int]) -> int:
low, high = 0, len(nums)-1
while(low<=high): #注意这里是小于等于不是小于,非常重要,在low和去high相等之后,再进入循环,目的是让low向前进1,拿到最后对应的元素值,因为返回的是low
mid = (low+high)//2
if(nums[mid]==mid):
low = mid + 1
else:
high = mid - 1
return low