《Scikit-Learn与TensorFlow机器学习实用指南》第13章 卷积神经网络

第13章 卷积神经网络

来源:ApacheCN《Sklearn 与 TensorFlow 机器学习实用指南》翻译项目

译者:@akonwang @WilsonQu

校对: @飞龙

​尽管 IBM 的深蓝超级计算机在1996年击败了国际象棋世界冠军 Garry Kasparvo,直到近几年计算机都不能可靠地完成一些看起来较为复杂的任务,比如判别照片中是否有狗以及识别语音。为什么这些任务对于人类而言如此简单?答案在于感知主要发生在我们意识领域之外,在我们大脑中的专门视觉,听觉和其他感官模块内。当感官信息达到我们的意识时,它已经被装饰了高级特征;例如,当你看着一只可爱的小狗的照片时,你不能选择不看这只小狗,或不注意它的可爱。你也不能解释你如何认出这是一只可爱的小狗,这对你来说很明显。因此,我们不能相信我们的主观经验:感知并不是微不足道的,理解它我们必须看看感官模块是如何工作的。

​卷积神经网络(CNN)是从大脑视觉皮层的研究中出现的,自 20 世纪 80 年代以来它们一直用于图像识别。在过去的几年里,由于计算能力的增加,可用训练数据的数量以及第 11 章介绍的训练深度网络的技巧,CNN 致力于在某些复杂的视觉任务中做出超出人类的表现。他们使图像搜索服务,自动驾驶汽车,视频自动分类系统等变得强大。此外,CNN 并不局限于视觉感知:它们在其他任务中也很成功,如语音识别或自然语言处理(NLP); 然而,我们现在将专注于视觉应用。

​在本章中,我们将介绍 CNN 的来源,构建它们模块的外观以及如何使用 TensorFlow 实现它们。然后我们将介绍一些最好的 CNN 架构。

阅读全文

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容

  • 姓名:尤学强 学号:17101223374 转载自:http://mp.weixin.qq.com/s/C6cID...
    51fb659a6d6f阅读 3,650评论 0 16
  • 本系列文章面向深度学习研发者,希望通过Image Caption Generation,一个有意思的具体任务,深入...
    imGeek阅读 2,684评论 1 33
  • 我们都知道,神经网络是由一层一层的神经元组合而成的,每个层之间可以通过不同的方式来连接起来以构成不同结构的神经网络...
    1桶阅读 5,505评论 0 2
  • 你所说的和做的,只是别人故事里的一个情节。这话你能看到,却不会有人说给你听。真的有人脑袋比钟表还精密,愚钝者无法想...
    君子包阅读 244评论 0 2
  • 今天是农历正月初七, 我再一次拔打你的电话。 问你三年前欠我的工资,什么时候给我? 你说,今天你进城,顺便给我送来...
    歪才大白话阅读 585评论 3 2