转录组定量工具-featureCounts安装及使用

        计算表达量可以用 StringTie、Htseq-count或featureCount ,第一次做转录组分析时,参照了一篇Cell的子刊文章的分析方法,里面使用的STAR+featureCount,就直接用了这个软件,也就没再使用别的,回头看第一次使用时,发现好多细节没有注意到,温故而知新。featureCount是subread软件包里的一个命令,所以安装subread即可。而subread又有命令行版和R版,有服务器,自然选择命令行版了。

featureCounts,有两个核心概念:

       Feature: 指的是基因组区间的最小单位,比如exon;

       Metafeature: 可以看做是许多的feature构成的区间,比如属于同一个gene的外显子的组合。

       在定量的时候,支持对单个feature 定量(对外显子定量), 也支持对meta-feature进行定量(对基因进行定量)。当reads比对到2个或者以上的features 时,默认情况下,featureCounts在统计时会忽略到这部分reads, 如果你想要统计上这部分reads,可以添加-O 参数,此时一条reads 比对到多个feature,每个feature 定量时,都会加1。对于meta-features来说,如果比对到多个features 属于同一个 meta-features(比如一条reads比对到了exon, 但这些exon属于同一个gene), 则对于这个gene 而言,只会计数1次。总之,不管对于feature 还是meta-feature,只有比对多个不同的区间时,才会分别计数。

一、软件下载及安装:

  首先是官方网站

        https://sourceforge.net/projects/subread/

        http://subread.sourceforge.net

二、参数说明:

-a 指定注释文件

-o 指定结果输出目录及文件名

-p 能用在paired-end的情况中,会统计fragment而不统计read

-t 指定feature的类型,默认是exon,当然gtf里面还有gene、CDS或者直接以feature命名的分类方式。

其它参数:

 -f参数  该参数设置后统计的是feature层面(默认是exon)的参数,如果不设置则是直接统计meta-feature参数(即一个gene中的多个exon

这时按exon分类进行统计,但是由于没有设置-f,在同一个gene内的exon会被统计成一个meta-feature,但是每个exon仍然会被显示出来,遇到一个gene有多个exon的时候看着就很乱。

第二种:然后我加上-f,这样设置-t exon -f , 看一下结果:

        我现在还不确定-f参数及-t参数对后面差异表达会不会有影响,初步判断不会的,但我注意到,-t gene -f设置后,count计数基于gene 层面,就不会出现相同基因的不同外显子count值,也就是第一列不会出现重复,并且可以直接得到基因信息,避免了注释、删除重复这个过程,我们做转录组测序,不就是想看基因水平的变化吗,我觉得这是很好的一个参数设置,不知道为什么网上一堆的帖子都没有这样设置,官网上示例也只是-t exon。希望未来有人和我讨论一下这个问题。

最终:我基于自己的理解,加上-t gene -f参数了。

三、结果

1、运行过程情况:

        Successfully assignedalignments: 14212190 (32.7%), 说明只有32.7的paired reads 定量到了基因上,如果想知道那些没有分配上的reads是出于什么原因,则可看下图,输出中的summary文件。

     Unmapped: 没有比对上;     

     MultiMapping:多个序列比对在有限的序列区域上,即参考组上有多个匹配点; 

     NoFeatures: 其比对与任何基因都不重叠; 

     ambiguous: 其比对与多个基因重叠。

2. 合并不同样本的count文件:

        join count1.txt count2.txt > count_12.txt

        或者先提取出来每个样本的第一列和第七列信息,再通过join合并

        cut -f 1,7 count1.txt | grep -v ‘^#’ >count1_cut.txt

        这样就能得到所有的样本的Count矩阵了。

总结:使用这个工具时要根据不同的项目,不同的目的,参数也要进行适当的调整,尤其是模式生物和非模式生物研究时,一定要想想参数设置合适不合适,我不认为写好了一个流程,就可以用来做所有课题的转录组分析了。这也是自己会和交给公司来做最大的好处了,自己的课题,只有自己才能对数据结果负责。

附:

STAR有一个参数-quantMode,可以指定--quantMode GeneCounts输出STAR计算出的reads计数结果,如果是比对完之后未做转录本拼装,直接对已知基因(构建基因组索引时GTF中囊括的基因)进行定量时,完全不需要再次用featureCounts或HTSeq再计算reads count。以后试试。

参考:

//www.greatytc.com/p/9cc4e8657d62

http://www.360doc.com/content/21/0714/12/76149697_986499746.shtml

https://pubmed.ncbi.nlm.nih.gov/24227677/

http://subread.sourceforge.net/featureCounts.html

http://subread.sourceforge.net/RNAseqCaseStudy.html

本文使用 文章同步助手 同步

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,776评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,527评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,361评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,430评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,511评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,544评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,561评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,315评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,763评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,070评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,235评论 1 343
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,911评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,554评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,173评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,424评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,106评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,103评论 2 352

推荐阅读更多精彩内容