【教3妹学编程-算法题】匹配模式数组的子数组数目 I

瑟瑟发抖

3妹:2哥2哥,你有没有看到上海女老师出轨男学生的瓜啊。
2哥 : 看到 了,真的是太毁三观了!
3妹:是啊, 老师本是教书育人的职业,明确规定不能和学生谈恋爱啊,更何况是出轨。
2哥 : 是啊,更何况男生才16,年龄也不匹配啊。
3妹:抛开这个事件不说,你觉得多大的年龄差才是匹配的?2哥找到你匹配的另一半了吗?
2哥:切,又拿我单身狗开玩笑了。
3妹:说到匹配,我今天看到一个关于“匹配”的题目,让我们一起来做下吧~

吃瓜

题目:

给你一个下标从 0 开始长度为 n 的整数数组 nums ,和一个下标从 0 开始长度为 m 的整数数组 pattern ,pattern 数组只包含整数 -1 ,0 和 1 。

大小为 m + 1 的
子数组
nums[i..j] 如果对于每个元素 pattern[k] 都满足以下条件,那么我们说这个子数组匹配模式数组 pattern :

如果 pattern[k] == 1 ,那么 nums[i + k + 1] > nums[i + k]
如果 pattern[k] == 0 ,那么 nums[i + k + 1] == nums[i + k]
如果 pattern[k] == -1 ,那么 nums[i + k + 1] < nums[i + k]
请你返回匹配 pattern 的 nums 子数组的 数目 。

示例 1:

输入:nums = [1,2,3,4,5,6], pattern = [1,1]
输出:4
解释:模式 [1,1] 说明我们要找的子数组是长度为 3 且严格上升的。在数组 nums 中,子数组 [1,2,3] ,[2,3,4] ,[3,4,5] 和 [4,5,6] 都匹配这个模式。
所以 nums 中总共有 4 个子数组匹配这个模式。
示例 2:

输入:nums = [1,4,4,1,3,5,5,3], pattern = [1,0,-1]
输出:2
解释:这里,模式数组 [1,0,-1] 说明我们需要找的子数组中,第一个元素小于第二个元素,第二个元素等于第三个元素,第三个元素大于第四个元素。在 nums 中,子数组 [1,4,4,1] 和 [3,5,5,3] 都匹配这个模式。
所以 nums 中总共有 2 个子数组匹配这个模式。

提示:

2 <= n == nums.length <= 100
1 <= nums[i] <= 109
1 <= m == pattern.length < n
-1 <= pattern[i] <= 1

思路:

思考

KMP,
把 nums的相邻元素,根据题目规定的大小关系,转换成 1,0,−1,得到一个长为 n−1的数组 bbb。

问题相当于问 b 中有多少个连续子数组等于 pattern。

这是一个标准的字符串匹配问题(本题匹配的是数字不是字符),可以用 KMP解决。

java代码:

class Solution {
    public int countMatchingSubarrays(int[] nums, int[] pattern) {
        int m = pattern.length;
        int[] pi = new int[m];
        int cnt = 0;
        for (int i = 1; i < m; i++) {
            int v = pattern[i];
            while (cnt > 0 && pattern[cnt] != v) {
                cnt = pi[cnt - 1];
            }
            if (pattern[cnt] == v) {
                cnt++;
            }
            pi[i] = cnt;
        }

        int ans = 0;
        cnt = 0;
        for (int i = 1; i < nums.length; i++) {
            int v = Integer.compare(nums[i], nums[i - 1]);
            while (cnt > 0 && pattern[cnt] != v) {
                cnt = pi[cnt - 1];
            }
            if (pattern[cnt] == v) {
                cnt++;
            }
            if (cnt == m) {
                ans++;
                cnt = pi[cnt - 1];
            }
        }
        return ans;
    }
}


©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 227,572评论 6 531
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 98,071评论 3 414
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 175,409评论 0 373
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 62,569评论 1 307
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 71,360评论 6 404
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 54,895评论 1 321
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 42,979评论 3 440
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 42,123评论 0 286
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 48,643评论 1 333
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 40,559评论 3 354
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 42,742评论 1 369
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 38,250评论 5 356
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 43,981评论 3 346
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 34,363评论 0 25
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 35,622评论 1 280
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 51,354评论 3 390
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 47,707评论 2 370

推荐阅读更多精彩内容