一、概论
在 java 层的消息处理机制,其中MessageQueue类里面涉及到多个native方法,除了MessageQueue的native方法,native层本身也有一套完整的消息机制,用于处理native的消息;
整个消息机制中,而Messagequeue是连接java 层和native 层纽带,java 层可以向messageQueue消息队列添加消息,native层也可以向messageQueue消息队列中添加消息,接下来看看MessageQueue。
二、 MessageQueue
在MessageQueue中native方法如下:
private native static long nativeInit();
private native static void nativeDestroy(long ptr);
private native void nativePollOnce(long ptr, int timeoutMillis);
private native static void nativeWake(long ptr);
private native static boolean nativeIsPolling(long ptr);
private native static void nativeSetFileDescriptorEvents(long ptr, int fd, int events);
2.1 nativeInit()
Looper.prepareMainLooper()===>...===>MessageQueue(fasle)
在MessageQueue的构造函数中调用nativeInt()原生方法;
初始化过程的调用链如下:
1. android_os_MessageQueue_nativeInit()
android_os_MessageQueue.cpp
static jlong android_os_MessageQueue_nativeInit(JNIEnv* env, jclass clazz) { //初始化native消息队列
NativeMessageQueue* nativeMessageQueue = new NativeMessageQueue();
if (!nativeMessageQueue) {
jniThrowRuntimeException(env, "Unable to allocate native queue");
return 0;
}
//增加引用计数
nativeMessageQueue->incStrong(env);
return reinterpret_cast<jlong>(nativeMessageQueue);
}
2. new NativeMessageQueue()
android_os_MessageQueue.cpp
NativeMessageQueue::NativeMessageQueue() :
mPollEnv(NULL), mPollObj(NULL), mExceptionObj(NULL) {
mLooper = Looper::getForThread();//获取ThreadLocal中的Looper对象
if (mLooper == NULL) {
mLooper = new Looper(false);//如果Looper为空创建Looper
Looper::setForThread(mLooper);//保存到Looper到ThreadLocal
}
}
- Looper::getForThread()功能类似于java 层的Looper.myLooper()
- Looper::setForThread(mLooper)功能类似于java 层的ThreadLocal.set()
此时Native的Looper和Java层的Looper没有任何的关系,只是在native层重实现了一套类似的功能逻辑。
3. new Looper()
Looper.cpp
Looper::Looper(bool allowNonCallbacks) :
mAllowNonCallbacks(allowNonCallbacks), mSendingMessage(false),
mPolling(false), mEpollFd(-1), mEpollRebuildRequired(false),
mNextRequestSeq(0), mResponseIndex(0), mNextMessageUptime(LLONG_MAX) {
mWakeEventFd = eventfd(0, EFD_NONBLOCK);
LOG_ALWAYS_FATAL_IF(mWakeEventFd < 0, "Could not make wake event fd. errno=%d", errno);
AutoMutex _l(mLock);
rebuildEpollLocked();//重建Epoll事件
}
4.epoll_create/epoll_ctl
Looper.cpp
void Looper::rebuildEpollLocked() {
// Close old epoll instance if we have one.
if (mEpollFd >= 0) {
#if DEBUG_CALLBACKS
ALOGD("%p ~ rebuildEpollLocked - rebuilding epoll set", this);
#endif
close(mEpollFd);//关闭旧的epoll实例
}
// Allocate the new epoll instance and register the wake pipe.
//创建新的epoll实例,并注册wake管道,返回的也是一个描述符
mEpollFd = epoll_create(EPOLL_SIZE_HINT);
LOG_ALWAYS_FATAL_IF(mEpollFd < 0, "Could not create epoll instance. errno=%d", errno);
struct epoll_event eventItem;
//把未使用的数据区域进行0操作
memset(& eventItem, 0, sizeof(epoll_event)); // zero out unused members of data field union
//可读事件
eventItem.events = EPOLLIN;
//将唤醒事件(mWakeEventFd)添加到epoll实例中
eventItem.data.fd = mWakeEventFd;
int result = epoll_ctl(mEpollFd, EPOLL_CTL_ADD, mWakeEventFd, & eventItem);
LOG_ALWAYS_FATAL_IF(result != 0, "Could not add wake event fd to epoll instance. errno=%d",
errno);
for (size_t i = 0; i < mRequests.size(); i++) {
const Request& request = mRequests.valueAt(i);
struct epoll_event eventItem;
request.initEventItem(&eventItem);
//将request队列的事件,分别添加到epoll实例
int epollResult = epoll_ctl(mEpollFd, EPOLL_CTL_ADD, request.fd, & eventItem);
if (epollResult < 0) {
ALOGE("Error adding epoll events for fd %d while rebuilding epoll set, errno=%d",
request.fd, errno);
}
}
}
2.2 nativeDestroy()
清理回收的调用链如下:
【1】 MessageQueue.dispose()
MessageQueue.java
private void dispose() {
if (mPtr != 0) {
nativeDestroy(mPtr); 【2】
mPtr = 0;
}
}
【2】 android_os_MessageQueue_nativeDestroy()
===>android_os_MessageQueue.cpp
static void android_os_MessageQueue_nativeDestroy(JNIEnv* env, jclass clazz, jlong ptr) {
NativeMessageQueue* nativeMessageQueue = reinterpret_cast<NativeMessageQueue*>(ptr);
nativeMessageQueue->decStrong(env); 【3】
}
nativeMessageQueue继承自RefBase类,所以decStrong最终调用的是RefBase.decStrong().
【3】 RefBase::decStrong()
===> RefBase.cpp
void RefBase::decStrong(const void* id) const
{
weakref_impl* const refs = mRefs;
refs->removeStrongRef(id); //移除强引用
const int32_t c = android_atomic_dec(&refs->mStrong);
if (c == 1) {
refs->mBase->onLastStrongRef(id);
if ((refs->mFlags&OBJECT_LIFETIME_MASK) == OBJECT_LIFETIME_STRONG) {
delete this;
}
}
refs->decWeak(id); // 移除弱引用
}
2.3 nativePollOnce()
nativePollOnce用于提取消息队列中的消息,提取消息的调用链,如下:
【1】 MessageQueue.next()
===> MessageQueue.java
Message next() {
final long ptr = mPtr;
if (ptr == 0) {
return null;
}
for (;;) {
...
nativePollOnce(ptr, nextPollTimeoutMillis); //阻塞操作 【2】
...
}
...
}
【2】android_os_MessageQueue_nativePollOnce()
====> android_os_MessageQueue.cpp
static void android_os_MessageQueue_nativePollOnce(JNIEnv* env, jobject obj, jlong ptr, jint timeoutMillis) {
//将Java层传递下来的mPtr转换为nativeMessageQueue
NativeMessageQueue* nativeMessageQueue = reinterpret_cast<NativeMessageQueue*>(ptr);
nativeMessageQueue->pollOnce(env, obj, timeoutMillis); 【3】
}
【3】NativeMessageQueue::pollOnece()
==> android_os_MessageQueue.cpp
static void android_os_MessageQueue_nativePollOnce(JNIEnv* env, jobject obj, jlong ptr, jint timeoutMillis) {
//将Java层传递下来的mPtr转换为nativeMessageQueue
NativeMessageQueue* nativeMessageQueue = reinterpret_cast<NativeMessageQueue*>(ptr);
nativeMessageQueue->pollOnce(env, obj, timeoutMillis); 【3】
}
==> android_os_MessageQueue.cpp
void NativeMessageQueue::pollOnce(JNIEnv* env, jobject pollObj, int timeoutMillis) {
mPollEnv = env;
mPollObj = pollObj;
mLooper->pollOnce(timeoutMillis); 【4】
mPollObj = NULL;
mPollEnv = NULL;
if (mExceptionObj) {
env->Throw(mExceptionObj);
env->DeleteLocalRef(mExceptionObj);
mExceptionObj = NULL;
}
}
[4]Looper::pollOnce()
==> Looper.h 、 Looper.cpp
inline int pollOnce(int timeoutMillis) {
return pollOnce(timeoutMillis, NULL, NULL, NULL); 【5】
}
int Looper::pollOnce(int timeoutMillis, int* outFd, int* outEvents, void** outData) {
int result = 0;
for (;;) {
// 先处理Callback方法的 Response事件
while (mResponseIndex < mResponses.size()) {
const Response& response = mResponses.itemAt(mResponseIndex++);
int ident = response.request.ident;
if (ident >= 0) { //ident大于0,则表示没有callback, 因为POLL_CALLBACK = -2,
int fd = response.request.fd;
int events = response.events;
void* data = response.request.data;
if (outFd != NULL) *outFd = fd;
if (outEvents != NULL) *outEvents = events;
if (outData != NULL) *outData = data;
return ident;
}
}
if (result != 0) {
if (outFd != NULL) *outFd = 0;
if (outEvents != NULL) *outEvents = 0;
if (outData != NULL) *outData = NULL;
return result;
}
// 再处理内部轮询
result = pollInner(timeoutMillis); 【6】
}
}
【5】Looper::pollInner()
==> Looper.cpp
int Looper::pollInner(int timeoutMillis) {
...
int result = POLL_WAKE;
mResponses.clear();
mResponseIndex = 0;
mPolling = true; //即将处于idle状态
struct epoll_event eventItems[EPOLL_MAX_EVENTS]; //fd最大个数为16
//等待事件发生或者超时,在nativeWake()方法,向管道写端写入字符,则该方法会返回;
int eventCount = epoll_wait(mEpollFd, eventItems, EPOLL_MAX_EVENTS, timeoutMillis);
mPolling = false; //不再处于idle状态
mLock.lock(); //请求锁
if (mEpollRebuildRequired) {
mEpollRebuildRequired = false;
rebuildEpollLocked(); // epoll重建,直接跳转Done;
goto Done;
}
if (eventCount < 0) {
if (errno == EINTR) {
goto Done;
}
result = POLL_ERROR; // epoll事件个数小于0,发生错误,直接跳转Done;
goto Done;
}
if (eventCount == 0) { //epoll事件个数等于0,发生超时,直接跳转Done;
result = POLL_TIMEOUT;
goto Done;
}
//循环遍历,处理所有的事件
for (int i = 0; i < eventCount; i++) {
int fd = eventItems[i].data.fd;
uint32_t epollEvents = eventItems[i].events;
if (fd == mWakeEventFd) {
if (epollEvents & EPOLLIN) {
awoken(); //已经唤醒了,则读取并清空管道数据【7】
}
} else {
ssize_t requestIndex = mRequests.indexOfKey(fd);
if (requestIndex >= 0) {
int events = 0;
if (epollEvents & EPOLLIN) events |= EVENT_INPUT;
if (epollEvents & EPOLLOUT) events |= EVENT_OUTPUT;
if (epollEvents & EPOLLERR) events |= EVENT_ERROR;
if (epollEvents & EPOLLHUP) events |= EVENT_HANGUP;
//处理request,生成对应的reponse对象,push到响应数组
pushResponse(events, mRequests.valueAt(requestIndex));
}
}
}
Done: ;
//再处理Native的Message,调用相应回调方法
mNextMessageUptime = LLONG_MAX;
while (mMessageEnvelopes.size() != 0) {
nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC);
const MessageEnvelope& messageEnvelope = mMessageEnvelopes.itemAt(0);
if (messageEnvelope.uptime <= now) {
{
sp<MessageHandler> handler = messageEnvelope.handler;
Message message = messageEnvelope.message;
mMessageEnvelopes.removeAt(0);
mSendingMessage = true;
mLock.unlock(); //释放锁
handler->handleMessage(message); // 处理消息事件
}
mLock.lock(); //请求锁
mSendingMessage = false;
result = POLL_CALLBACK; // 发生回调
} else {
mNextMessageUptime = messageEnvelope.uptime;
break;
}
}
mLock.unlock(); //释放锁
//处理带有Callback()方法的Response事件,执行Reponse相应的回调方法
for (size_t i = 0; i < mResponses.size(); i++) {
Response& response = mResponses.editItemAt(i);
if (response.request.ident == POLL_CALLBACK) {
int fd = response.request.fd;
int events = response.events;
void* data = response.request.data;
// 处理请求的回调方法
int callbackResult = response.request.callback->handleEvent(fd, events, data);
if (callbackResult == 0) {
removeFd(fd, response.request.seq); //移除fd
}
response.request.callback.clear(); //清除reponse引用的回调方法
result = POLL_CALLBACK; // 发生回调
}
}
return result;
}
pollOnce返回值说明:
- POLL_WAKE: 表示由wake()触发,即pipe写端的write事件触发;
- POLL_CALLBACK: 表示某个被监听fd被触发。
- POLL_TIMEOUT: 表示等待超时;
- POLL_ERROR:表示等待期间发生错误;
【6】Looper::awoken()
void Looper::awoken() {
uint64_t counter;
//不断读取管道数据,目的就是为了清空管道内容
TEMP_FAILURE_RETRY(read(mWakeEventFd, &counter, sizeof(uint64_t)));
}
pollInner()方法的处理流程:
- 先调用epoll_wait(),这是阻塞方法,用于等待事件发生或者超时;
- 对于epoll_wait()返回,当且仅当以下3种情况出现:
- POLL_ERROR,发生错误,直接跳转到Done;
- POLL_TIMEOUT,发生超时,直接跳转到Done;
- 检测到管道有事件发生,则再根据情况做相应处理:
- 如果是管道读端产生事件,则直接读取管道的数据;
- 如果是其他事件,则处理request,生成对应的reponse对象,push到reponse数组;
- 进入Don标记位的代码段:
- 先处理Native的Message,调用Native 的Handler来处理该Message;
- 再处理Response数组,POLL_CALLBACK类型的事件;
从上面的流程,可以发现对于Request先收集,一并放入reponse数组,而不是马上执行。真正在Done开始执行的时候,是先处理native Message,再处理Request,说明native Message的优先级高于Request请求的优先级。
另外pollOnce()方法中,先处理Response数组中不带Callback的事件,再调用了pollInner()方法。
2.4 nativeWake()
nativeWake用于唤醒功能,在添加消息的到消息队列enqueueMessage(),或者把消息从消息队列中全部移除quit(),再有需要时都会调用nativeWake方法。包含唤醒过程的添加消息的调用链,如下:
【1】MessageQueue.enqueueMessage()
====》MessageQueue.java
boolean enqueueMessage(Message msg, long when) {
... //将Message按时间顺序插入MessageQueue
if (needWake) {
nativeWake(mPtr); 【2】
}
}
往消息队列添加Message时,需要根据mBloack情况来决定是否需要调用nativeWake。
【2】 android_os_MessageQueue_nativeWake()
static void android_os_MessageQueue_nativeWake(JNIEnv* env, jclass clazz, jlong ptr) {
NativeMessageQueue* nativeMessageQueue = reinterpret_cast<NativeMessageQueue*>(ptr);
nativeMessageQueue->wake(); 【3】
}
【3】NativeMessageQueue::wake()
==> android_os_MessageQueue.cpp
void NativeMessageQueue::wake() {
mLooper->wake(); 【4】
}
【4】Looper::wake()
==> Looper.cpp
void Looper::wake() {
uint64_t inc = 1;
// 向管道mWakeEventFd写入字符1
ssize_t nWrite = TEMP_FAILURE_RETRY(write(mWakeEventFd, &inc, sizeof(uint64_t)));
if (nWrite != sizeof(uint64_t)) {
if (errno != EAGAIN) {
ALOGW("Could not write wake signal, errno=%d", errno);
}
}
}
其中TEMP_FAILURE_RETRY 是一个宏定义, 当执行write失败后,会不断重复执行,直到执行成功为止。