Kylin构建Cube的过程1

#.参考链接

refer: https://kylin.apache.org/docs20/howto/howto_optimize_build.html
refer: https://kylin.apache.org/cn/docs/howto/howto_optimize_build.html
refer: https://kylin.apache.org/cn/docs/tutorial/cube_build_performance.html

1.创建Hive的中间平表

这一步将数据从源Hive表提取出来(和所有join的表一起)并插入到一个中间平表。如果Cube是分区的,Kylin会加上一个时间条件以确保只有在时间范围内的数据才会被提取。你可以在这个步骤的log查看相关的Hive命令,比如:

hive -e "USE default;

DROP TABLE IF EXISTS kylin_intermediate_airline_cube_v3610f668a3cdb437e8373c034430f6c34;

CREATE EXTERNAL TABLE IF NOT EXISTS kylin_intermediate_airline_cube_v3610f668a3cdb437e8373c034430f6c34

(AIRLINE_FLIGHTDATE date,AIRLINE_YEAR int,AIRLINE_QUARTER int,...,AIRLINE_ARRDELAYMINUTES int)

STORED AS SEQUENCEFILE

LOCATION 'hdfs:///kylin/kylin200instance/kylin-0a8d71e8-df77-495f-b501-03c06f785b6c/kylin_intermediate_airline_cube_v3610f668a3cdb437e8373c034430f6c34';

SET dfs.replication=2;

SET hive.exec.compress.output=true;

SET hive.auto.convert.join.noconditionaltask=true;

SET hive.auto.convert.join.noconditionaltask.size=100000000;

SET mapreduce.job.split.metainfo.maxsize=-1;

INSERT OVERWRITE TABLE kylin_intermediate_airline_cube_v3610f668a3cdb437e8373c034430f6c34 SELECT

AIRLINE.FLIGHTDATE

,AIRLINE.YEAR

,AIRLINE.QUARTER

,...

,AIRLINE.ARRDELAYMINUTES

FROM AIRLINE.AIRLINE as AIRLINE

WHERE (AIRLINE.FLIGHTDATE >= '1987-10-01' AND AIRLINE.FLIGHTDATE < '2017-01-01');

在Hive命令运行时,Kylin会用conf/kylin_hive_conf.properties里的配置,比如保留更少的冗余备份和启用Hive的mapper side join。需要的话可以根据集群的具体情况增加其他配置。

如果cube的分区列(在这个案例中是”FIGHTDATE”)与Hive表的分区列相同,那么根据它过滤数据能让Hive聪明地跳过不匹配的分区。因此强烈建议用Hive的分区列(如果它是日期列)作为cube的分区列。这对于那些数据量很大的表来说几乎是必须的,否则Hive不得不每次在这步扫描全部文件,消耗非常长的时间。

如果启用了Hive的文件合并,你可以在conf/kylin_hive_conf.xml里关闭它,因为Kylin有自己合并文件的方法(下一节):

<property>

    <name>hive.merge.mapfiles</name>

    <value>false</value>

    <description>Disable Hive's auto merge</description>

</property>

2.重新分发中间表

在之前的一步之后,Hive在HDFS上的目录里生成了数据文件:有些是大文件,有些是小文件甚至空文件。这种不平衡的文件分布会导致之后的MR任务出现数据倾斜的问题:有些mapper完成得很快,但其他的就很慢。针对这个问题,Kylin增加了这一个步骤来“重新分发”数据,这是示例输出:

total input rows = 159869711

expected input rows per mapper = 1000000

num reducers for RedistributeFlatHiveTableStep = 160

重新分发表的命令:

hive -e "USE default;

SET dfs.replication=2;

SET hive.exec.compress.output=true;

SET hive.auto.convert.join.noconditionaltask=true;

SET hive.auto.convert.join.noconditionaltask.size=100000000;

SET mapreduce.job.split.metainfo.maxsize=-1;

set mapreduce.job.reduces=160;

set hive.merge.mapredfiles=false;

INSERT OVERWRITE TABLE kylin_intermediate_airline_cube_v3610f668a3cdb437e8373c034430f6c34 SELECT * FROM kylin_intermediate_airline_cube_v3610f668a3cdb437e8373c034430f6c34 DISTRIBUTE BY RAND();

"

首先,Kylin计算出中间表的行数,然后基于行数的大小算出重新分发数据需要的文件数。默认情况下,Kylin为每一百万行分配一个文件。在这个例子中,有1.6亿行和160个reducer,每个reducer会写一个文件。在接下来对这张表进行的MR步骤里,Hadoop会启动和文件相同数量的mapper来处理数据(通常一百万行数据比一个HDFS数据块要小)。如果你的日常数据量没有这么大或者Hadoop集群有足够的资源,你或许想要更多的并发数,这时可以将conf/kylin.properties里的kylin.job.mapreduce.mapper.input.rows设为小一点的数值,比如:

kylin.job.mapreduce.mapper.input.rows=500000

其次,Kylin会运行 “INSERT OVERWRITE TABLE … DISTRIBUTE BY “ 形式的HiveQL来分发数据到指定数量的reducer上。

在很多情况下,Kylin请求Hive随机分发数据到reducer,然后得到大小相近的文件,分发的语句是”DISTRIBUTE BY RAND()”。

如果你的cube指定了一个高基数的列,比如”USER_ID”,作为”分片”维度(在cube的“高级设置”页面),Kylin会让Hive根据该列的值重新分发数据,那么在该列有着相同值的行将被分发到同一个文件。这比随机要分发要好得多,因为不仅重新分布了数据,并且在没有额外代价的情况下对数据进行了预先分类,如此一来接下来的cube build处理会从中受益。在典型的场景下,这样优化可以减少40%的build时长。在这个案例中分发的语句是”DISTRIBUTE BY USER_ID”:

请注意: 1)“分片”列应该是高基数的维度列,并且它会出现在很多的cuboid中(不只是出现在少数的cuboid)。 使用它来合理进行分发可以在每个时间范围内的数据均匀分布,否则会造成数据倾斜,从而降低build效率。典型的正面例子是:“USER_ID”、“SELLER_ID”、“PRODUCT”、“CELL_NUMBER”等等,这些列的基数应该大于一千(远大于reducer的数量)。 2)”分片”对cube的存储同样有好处,不过这超出了本文的范围。

3.提取事实表的唯一列

在这一步骤Kylin运行MR任务来提取使用字典编码的维度列的唯一值。

实际上这步另外还做了一些事情:通过HyperLogLog计数器收集cube的统计数据,用于估算每个cuboid的行数。如果你发现mapper运行得很慢,这通常表明cube的设计太过复杂,请参考

优化cube设计来简化cube。如果reducer出现了内存溢出错误,这表明cuboid组合真的太多了或者是YARN的内存分配满足不了需要。如果这一步从任何意义上讲不能在合理的时间内完成,你可以放弃任务并考虑重新设计cube,因为继续下去会花费更长的时间。

你可以通过降低取样的比例(kylin.job.cubing.inmen.sampling.percent)来加速这个步骤,但是帮助可能不大而且影响了cube统计数据的准确性,所有我们并不推荐。

4.构建维度字典

有了前一步提取的维度列唯一值,Kylin会在内存里构建字典(在下个版本将改为MapReduce任务)。通常这一步比较快,但如果唯一值集合很大,Kylin可能会报出类似“字典不支持过高基数”。对于UHC类型的列,请使用其他编码方式,比如“fixed_length”、“integer”等等。

5.保存cuboid的统计数据和创建 HTable

这两步是轻量级和快速的。

6.构建基础cuboid

这一步用Hive的中间表构建基础的cuboid,是“逐层”构建cube算法的第一轮MR计算。Mapper的数目与第二步的reducer数目相等;Reducer的数目是根据cube统计数据估算的:默认情况下每500MB输出使用一个reducer;如果观察到reducer的数量较少,你可以将kylin.properties里的“kylin.job.mapreduce.default.reduce.input.mb”设为小一点的数值以获得过多的资源,比如:

kylin.job.mapreduce.default.reduce.input.mb=200

7.构建N维cuboid

这些步骤是“逐层”构建cube的过程,每一步以前一步的输出作为输入,然后去掉一个维度以聚合得到一个子cuboid。举个例子,cuboid ABCD去掉A得到BCD,去掉B得到ACD。

有些cuboid可以从一个以上的父cuboid聚合得到,这种情况下,Kylin会选择最小的一个父cuboid。举例,AB可以从ABC(id:1110)和ABD(id:1101)生成,则ABD会被选中,因为它的比ABC要小。在这基础上,如果D的基数较小,聚合运算的成本就会比较低。所以,当设计rowkey序列的时候,请记得将基数较小的维度放在末尾。这样不仅有利于cube构建,而且有助于cube查询,因为预聚合也遵循相同的规则。

通常来说,从N维到(N/2)维的构建比较慢,因为这是cuboid数量爆炸性增长的阶段:N维有1个cuboid,(N-1)维有N个cuboid,(N-2)维有N*(N-1)个cuboid,以此类推。经过(N/2)维构建的步骤,整个构建任务会逐渐变快。

8.构建cube

这个步骤使用一个新的算法来构建cube:“逐片”构建(也称为“内存”构建)。它会使用一轮MR来计算所有的cuboids,但是比通常情况下更耗内存。配置文件”conf/kylin_job_inmem.xml”正是为这步而设。默认情况下它为每个mapper申请3GB内存。如果你的集群有充足的内存,你可以在上述配置文件中分配更多内存给mapper,这样它会用尽可能多的内存来缓存数据以获得更好的性能,比如:

<property>

    <name>mapreduce.map.memory.mb</name>

    <value>6144</value>

    <description></description>

</property>

<property>

    <name>mapreduce.map.java.opts</name>

    <value>-Xmx5632m</value>

    <description></description>

</property>

请注意,Kylin会根据数据分布(从cube的统计数据里获得)自动选择最优的算法,没有被选中的算法对应的步骤会被跳过。你不需要显式地选择构建算法。

9.将cuboid数据转换为HFile

这一步启动一个MR任务来讲cuboid文件(序列文件格式)转换为HBase的HFile格式。Kylin通过cube统计数据计算HBase的region数目,默认情况下每5GB数据对应一个region。Region越多,MR使用的reducer也会越多。如果你观察到reducer数目较小且性能较差,你可以将“conf/kylin.properties”里的以下参数设小一点,比如:

kylin.hbase.region.cut=2

kylin.hbase.hfile.size.gb=1

如果你不确定一个region应该是多大时,联系你的HBase管理员。

10.将HFile导入HBase表

这一步使用HBase API来讲HFile导入region server,这是轻量级并快速的一步。

11.更新cube信息

在导入数据到HBase后,Kylin在元数据中将对应的cube segment标记为ready。

12.清理资源

将中间宽表从Hive删除。这一步不会阻塞任何操作,因为在前一步segment已经被标记为ready。如果这一步发生错误,不用担心,垃圾回收工作可以晚些再通过Kylin的StorageCleanupJob完成。

#

refer:https://kylin.apache.org/docs20/howto/howto_optimize_build.html


refer:https://kylin.apache.org/docs20/howto/howto_optimize_build.html

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,839评论 6 482
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,543评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 153,116评论 0 344
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,371评论 1 279
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,384评论 5 374
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,111评论 1 285
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,416评论 3 400
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,053评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,558评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,007评论 2 325
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,117评论 1 334
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,756评论 4 324
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,324评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,315评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,539评论 1 262
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,578评论 2 355
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,877评论 2 345