思维私塾——动态规划

在刷剑指offer和LeetCode中发现,动态规划是经常出现的一类题目,那么接下来我们就来仔细分析和总结下其中的套路。

介绍

动态规划(DP)说白了其实就是一种求解最优解的方法,是一种比较特殊的分治思想,利用它可以对时间复杂度进行优化,其主要是根据状态转移方程来进行求解。

其内部包含了主要的两种思想就是分治和贪心。

解题思路

总体来说动态规划题目的解题思路就四步:

  • 状态表示
  • 转移方程
  • 初始状态
  • 最终状态

下面我们详细的说明一下这四步,在刚开始的时候我们需要构建一个存储数据的表格,一般使用数组居多,然后通过分析题目找出存在的状态转移方程,即从上一个状态到下一个状态是如何变化的,然后根据题目设置我们的初始值,然后根据状态转移方程重复计算,在此过程中利用到了前面积累下来的记录,所以能够加快速度。最后一直倒找最终我们所需要的状态。

真题演练

我们这边拿剑指offer中的第47题礼物的最大价值这个典型的题目来举例让大家明白这个算法的思路

连续子数组的最大和

题目:

在一个 m*n 的棋盘的每一格都放有一个礼物,每个礼物都有一定的价值(价值大于 0)。你可以从棋盘的左上角开始拿格子里的礼物,并每次向右或者向下移动一格、直到到达棋盘的右下角。给定一个棋盘及其上面的礼物的价值,请计算你最多能拿到多少价值的礼物?

解法

本文说了是讲解动态规划的肯定是要用动态规划来解决这个问题。那我们就按照我们的步骤来进行

  • 状态表示

设动态规划矩阵dp[][],其中dp[i][j]表示从棋盘的左上角开始到达单元格(i,j)时能拿到礼物的最大累计价值

  • 转移方程

由于只能向右或者向下移动,所以:

    • 当i=0且j=0,为起始元素
    • 当i=0且j≠0,为第一行元素,只能左边到达
    • 当i≠0且j=0,为第一列元素,只能上边达到
    • 当i≠0且j不等于0,可从上边或者左边到达

所以,状态转移方程如下所示:

image
  • 初始状态

从上面分析我们可以知道dp[0][0]=grid[0][0]

  • 最终状态

最终状态就是我们遍历完即dp[m-1][n-1]。返回dp数组中右下角的元素

java实现

有了思路后面就是java的实现,如下所示:

class Solution {
    public int maxValue(int[][] grid) {
        int row = grid.length;
        int column = grid[0].length;
        //dp[i][j]表示从grid[0][0]到grid[i - 1][j - 1]时的最大价值
        int[][] dp = new int[row + 1][column + 1];
        for (int i = 1; i <= row; i++) {
            for (int j = 1; j <= column; j++) {
                dp[i][j] = Math.max(dp[i - 1][j], dp[i][j - 1]) + grid[i - 1][j - 1];
            }
        }
        return dp[row][column];
    }
}

总结

这些就是动态规划的所有内容了,作为一个在LeetCode中和面试中都经常出现的题目,可以说是必须要掌握起来了。总之就是关注四件事情:

  • 状态表示
  • 转移方程
  • 初始状态
  • 最终状态

其中最难的就是转移方程,这个要根据各个题目灵活处理,或者多做一些题目总结也可以获得不错的收获和进步。只要有了状态转移方程,后面的初始状态和边界值再多加注意就没有什么大问题了。

最后

  • 如果觉得看完有收获,希望能关注一下,顺便给我点个赞,这将会是我更新的最大动力,感谢各位的支持
  • 欢迎各位关注我的公众号【java冢狐】,专注于java和计算机基础知识,保证让你看完有所收获,不信你打我
  • 求一键三连:点赞、转发、在看。
  • 如果看完有不同的意见或者建议,欢迎多多评论一起交流。感谢各位的支持以及厚爱。

——我是冢狐,和你一样热爱编程。

欢迎关注公众号“ Java冢狐”,获取最新消息

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 225,337评论 6 524
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 96,560评论 3 406
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 172,632评论 0 370
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 61,219评论 1 303
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 70,219评论 6 401
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 53,670评论 1 316
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 42,018评论 3 431
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 41,000评论 0 280
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 47,552评论 1 326
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 39,565评论 3 347
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 41,692评论 1 355
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 37,280评论 5 351
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 43,009评论 3 341
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 33,435评论 0 25
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 34,587评论 1 277
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 50,276评论 3 383
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 46,752评论 2 367

推荐阅读更多精彩内容