了解MapReduce

MapReduce是面向大数据并行处理的计算模型、框架和平台。MapReduce是一个基于集群的高性能并行计算平台(Cluster Infrastructure)。MapReduce是一个并行计算与运行软件框架,很多系统底层的复杂细节交由系统负责处理,大大减少了软件开发人员的负担。【自动完成计算任务的并行化处理,自动划分计算数据和计算任务,在集群节点上自动分配和执行任务以及收集计算结果】MapReduce是一个并行程序设计模型与方法(Programming Model & Methodology)。用Map和Reduce两个函数编程实现基本的并行计算任务,提供了抽象的操作和并行编程接口,以简单方便地完成大规模数据的编程和计算处理。

Mapreduce的特点:

软件框架
并行处理
可靠且容错
大规模集群
海量数据集
MapReduce的思想就是“分而治之”

MapReduce工作机制:

image.png

作业执行涉及4个独立的实体(对象)

客户端(client):编写mapreduce程序,配置作业,提交作业,这就是程序员完成的

工作;

JobTracker:初始化作业,分配作业,与TaskTracker通信,协调整个作业的执行;

TaskTracker:保持与JobTracker的通信,在分配的数据片段上执行Map或Reduce任务,

TaskTracker和JobTracker的不同有个很重要的方面,就是在执行任务时候TaskTracker可以

有n多个,JobTracker则只会有一个(JobTracker只能有一个就和hdfs里namenode一样存在

单点故障)

Hdfs:保存作业的数据、配置信息等等,最后的结果也是保存在hdfs上面

作业工作流程图

image.png

mapreduce运行步骤:

1.客户端要编写好mapreduce程序,配置好mapreduce的作业也就是job

2.提交job了,提交job是提交到JobTracker上的,这个时候JobTracker就会构建这个job,具体就是分配一个新的job任务的ID值

3.JobTracker做检查操作,检查确定输出目录是否存在,检查输入目录是否存在,如果不存在那么job就不能正常运行下去,JobTracker会抛出错误给客户端,

4.如果存在JobTracker会根据输入计算输入分片(Input Split),如果分片计算不出来也会抛出错误,这些都做好了JobTracker就会配置Job需要的资源了。

5.分配好资源后,JobTracker就会初始化作业,初始化主要做的是将Job放入一个内部的队列,让配置好的作业调度器能调度到这个作业,作业调度器会初始化这个job,初始化就是创建一个正在运行的job对象(封装任务和记录信息),以便JobTracker跟踪job的状态和进程。

6.初始化完毕后,作业调度器会获取输入分片信息(input split),每个分片创建一个map任务。

7.任务分配,这个时候tasktracker会运行一个简单的循环机制定期发送心跳给jobtracker,心跳间隔是5秒,程序员可以配置这个时间,心跳就是jobtracker和tasktracker沟通的桥梁,通过心跳,jobtracker可以监控tasktracker是否存活,也可以获取tasktracker处理的状态和问题,同时tasktracker也可以通过心跳里的返回值获取jobtracker给它的操作指令。

8.任务分配好后就是执行任务了。在任务执行时候jobtracker可以通过心跳机制监控tasktracker的状态和进度,同时也能计算出整个job的状态和进度,而tasktracker也可以本地监控自己的状态和进度。

9.当jobtracker获得了最后一个完成指定任务的tasktracker操作成功的通知时候,jobtracker会把整个job状态置为成功.

10.然后当客户端查询job运行状态时候(注意:这个是异步操作),客户端会查到job完成的通知的。如果job中途失败,mapreduce也会有相应机制处理,一般而言如果不是程序员程序本身有bug,mapreduce错误处理机制都能保证提交的job能正常完成。


mapreduce运行机制

image.png

1.在Hadoop中,一个MapReduce作业会把输入的数据集切分为若干独立的数据块,由Map任务以完全并行的方式处理

2.框架会对Map的输出先进行排序,然后把结果输入给Reduce任务。

3.作业的输入和输出都会被存储在文件系统中,整个框架负责任务的调度和监控,以及重新执行已经关闭的任务
 
4.MapReduce框架和分布式文件系统是运行在一组相同的节点,计算节点和存储节点都是在一起的

一个MapReduce作业的输入和输出类型:会有三组<key,value>键值对类型的存在

image.png

Mapreduce作业的处理流程【important】

image.png

输入分片(input split):在进行map计算之前,mapreduce会根据输入文件计算输入分片(input split),每个输入分片(input split)针对一个map任务。输入分片(input split)存储的并非数据本身,而是一个分片长度和一个记录数据的位置的数组,输入分片(input split)往往和hdfs的block(块)关系很密切。

假如我们设定hdfs的块的大小是64mb,如果我们输入有三个文件,大小分别是3mb、65mb和127mb,那么mapreduce会把3mb文件分为一个输入分片(input split),65mb则是两个输入分片(input split)而127mb也是两个输入分片(input split)即我们如果在map计算前做输入分片调整,例如合并小文件,那么就会有5个map任务将执行,而且每个map执行的数据大小不均,这个也是mapreduce优化计算的一个关键点。

map阶段:程序员编写好的map函数了,因此map函数效率相对好控制,而且一般map操作都是本地化操作也就是在数据存储节点上进行。

combiner阶段:
combiner阶段是程序员可以选择的,combiner其实也是一种reduce操作,因此我们看见WordCount类里是用reduce进行加载的。

Combiner是一个本地化的reduce操作,它是map运算的后续操作,主要是在map计算出中间文件前做一个简单的合并重复key值的操作,例如我们对文件里的单词频率做统计,map计算时候如果碰到一个hadoop的单词就会记录为1,但是这篇文章里hadoop可能会出现n多次,那么map输出文件冗余就会很多,因此在reduce计算前对相同的key做一个合并操作,那么文件会变小,这样就提高了宽带的传输效率,毕竟hadoop计算力宽带资源往往是计算的瓶颈也是最为宝贵的资源,但是combiner操作是有风险的,使用它的原则是combiner的输入不会影响到reduce计算的最终输入,例如:如果计算只是求总数,最大值,最小值可以使用combiner,但是做平均值计算使用combiner的话,最终的reduce计算结果就会出错。

shuffle阶段:将map的输出作为reduce的输入的过程就是shuffle了

reduce阶段:和map函数一样也是程序员编写的,最终结果是存储在hdfs上的。

单点故障

jobtracker和hdfs的namenode一样也存在单点故障,
单点故障一直是hadoop被人诟病的大问题,
为什么hadoop的做的文件系统和mapreduce计算框架都是高容错的,但是最重要的管理节点的故障机制却如此不好,我认为主要是namenode和jobtracker在实际运行中都是在内存操作,而做到内存的容错就比较复杂了,只有当内存数据被持久化后容错才好做,namenode和jobtracker都可以备份自己持久化的文件,但是这个持久化都会有延迟,因此真的出故障,任然不能整体恢复,另外hadoop框架里包含zookeeper框架,zookeeper可以结合jobtracker,用几台机器同时部署jobtracker,保证一台出故障,有一台马上能补充上,不过这种方式也没法恢复正在跑的mapreduce任务。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 210,978评论 6 490
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 89,954评论 2 384
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 156,623评论 0 345
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,324评论 1 282
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,390评论 5 384
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,741评论 1 289
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,892评论 3 405
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,655评论 0 266
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,104评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,451评论 2 325
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,569评论 1 340
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,254评论 4 328
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,834评论 3 312
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,725评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,950评论 1 264
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,260评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,446评论 2 348

推荐阅读更多精彩内容

  • MapReduce框架结构## MapReduce是一个用于大规模数据处理的分布式计算模型MapReduce模型主...
    Bloo_m阅读 3,730评论 0 4
  • 思考问题 MapReduce总结 MapReduce MapReduce的定义MapReduce是一种编程模型, ...
    Sakura_P阅读 936评论 0 1
  • 目的这篇教程从用户的角度出发,全面地介绍了Hadoop Map/Reduce框架的各个方面。先决条件请先确认Had...
    SeanC52111阅读 1,711评论 0 1
  • 这一篇文章记录一下hadoop中的分布式运算MapReduce的过程,作为《深入理解大数据》的学习笔记。 上一篇看...
    七号萝卜阅读 2,111评论 0 7
  • 07/3/2017《超级个体》吾爱庐 知识概述 一、职业2种策略 1、资源策略:已有能力资源来做好手边的事,能做什...
    吾爱庐阅读 211评论 0 0