使用JMH做Java微基准测试

摘要: # 使用JMH做Java微基准测试        在使用Java编程过程中,我们对于一些代码调用的细节有多种编写方式,但是不确定它们性能时,往往采用重复多次计数的方式来解决。但是随着JVM不断的进化,随着代码执行次数的增加,JVM会不断的进行编译优化,使得重复多少次才能够得到一个稳定的测试结果变得让人疑惑,这时候有经验的同学 有学习Java的可以加Java大神交流群5-6-1-6-1-4-3-0-5。

使用JMH做Java微基准测试

       在使用Java编程过程中,我们对于一些代码调用的细节有多种编写方式,但是不确定它们性能时,往往采用重复多次计数的方式来解决。但是随着JVM不断的进化,随着代码执行次数的增加,JVM会不断的进行编译优化,使得重复多少次才能够得到一个稳定的测试结果变得让人疑惑,这时候有经验的同学就会在测试执行前先循环上万次并注释为预热。

没错!这样做确实可以获得一个偏向正确的测试结果,但是我们试想如果每到需要斟酌性能的时候,都要根据场景写一段预热的逻辑吗?当预热完成后,需要多少次迭代来进行正式内容的测量呢?每次测试结果的输出报告是不是都需要用System.out来输出呢?

其实这些工作都可以交给 JMH (the Java Microbenchmark Harness) ,它被作为Java9的一部分来发布,但是我们完全不需要等待Java9,而可以方便的使用它来简化我们测试,它能够照看好JVM的预热、代码优化,让你的测试过程变得更加简单。

开始

首先在项目中新增依赖,jmh-core以及jmh-generator-annprocess的依赖可以在maven仓库中找寻最新版本。

org.openjdk.jmhjmh-core1.19org.openjdk.jmhjmh-generator-annprocess1.19

创建一个Helloworld类,里面只有一个空方法m(),标注了@Benchmark的注解,声明这个方法为一个微基准测试方法,JMH 会在编译期生成基准测试的代码,并运行它。

publicclassHelloworld{@Benchmarkpublicvoidm(){    }}

       接着添加一个main入口,由它来启动测试。

publicclassHelloworldRunner{publicstaticvoidmain(String[] args)throwsRunnerException{        Options opt =newOptionsBuilder()                .include("Helloworld")                .exclude("Pref")                .warmupIterations(10)                .measurementIterations(10)                .forks(3)                .build();newRunner(opt).run();    }}

简单介绍一下这个HelloworldRunner,它是一个入口的同时还完成了 JMH 测试的配置工作。默认场景下,JMH 会找寻标注了@Benchmark类型的方法,可能会跑一些你所不需要的测试,这样就需要通过include和exclude两个方法来完成包含以及排除的语义。

warmupIterations(10)的意思是预热做10轮,measurementIterations(10)代表正式计量测试做10轮,而每次都是先执行完预热再执行正式计量,内容都是调用标注了@Benchmark的代码。

forks(3)指的是做3轮测试,因为一次测试无法有效的代表结果,所以通过3轮测试较为全面的测试,而每一轮都是先预热,再正式计量。

我们运行HelloworldRunner,经过一段时间,测试结果如下:

Result"com.alibaba.microbenchmark.test.Helloworld.m":  3084697483.521 ±(99.9%) 27096926.646 ops/s [Average]  (min, avg, max) = (2951123277.601, 3084697483.521, 3121456015.904), stdev = 40557407.239  CI (99.9%): [3057600556.875, 3111794410.166](assumes normal distribution)# Run complete. Total time: 00:01:02Benchmark      Mode  Cnt          Score          Error  UnitsHelloworld.m  thrpt  30  3084697483.521 ± 27096926.646  ops/s

可以看到分数是30亿次,但是这30亿指的是什么呢?仔细观察 Mode 一项中类型是thrpt,其实就是Throughput吞吐量,代表着每秒完成的次数。

测试类型

       前面提到测试的类型是吞吐量,也就是一秒钟调用完成的次数,但是如果想知道做一次需要多少时间该怎么办?

其实 1 / 吞吐量 就是这个值

JMH 提供了以下几种类型进行支持:

类型描述

Throughput每段时间执行的次数,一般是秒

AverageTime平均时间,每次操作的平均耗时

SampleTime在测试中,随机进行采样执行的时间

SingleShotTime在每次执行中计算耗时

All顾名思义,所有模式,这个在内部测试中常用

使用这些模式也非常简单,只需要增加@BenchmarkMode注解即可,例如:

@Benchmark@BenchmarkMode({Mode.Throughput, Mode.SingleShotTime})publicvoidm(){}

配置策略

JMH 支持通过@Fork注解完成配置,例如:

@Benchmark@Fork(value =1, warmups =2)@BenchmarkMode(Mode.Throughput)publicvoidinit(){}

以上注解指init()方法测试时,预热2轮,正式计量1轮,但是如果测试方法比较多,还是建议通过Options进行配置,具体可以参考HelloworldRunner。

例子:循环的微基准测试

for循环大家平时经常使用,但是看到过一个优化策略,就是倒序遍历,比如:for (int i = length; i > 0; i--)优于for (int i = 0; i < length; i++),有些不解。咨询了温少,温少给出的答案是i > 0优于i < length,因此倒序有优势,那么我们将这个场景做一下基准测试。

       首先是正向循环,次数是1百万次迭代。

publicclassCountPerf{@Benchmark@BenchmarkMode(Mode.Throughput)publicvoidcount(){for(inti =0; i <1_000_000; i++) {        }    }}

       接着是逆向循环,次数也是1百万次。

publicclassCountPerf{@Benchmark@BenchmarkMode(Mode.Throughput)publicvoidcount(){for(inti =1_000_000; i >0; i--) {        }    }}

       最后是一个测试的入口,我们采用3组,每组预热10轮,正式计量10轮,测试类型是吞吐量。

publicclassBenchmarkRunner{publicstaticvoidmain(String[] args)throwsRunnerException{        Options opt =newOptionsBuilder()                .include("Perf")                .exclude("Helloworld")                .warmupIterations(10)                .measurementIterations(10)                .forks(3)                .build();newRunner(opt).run();    }}

测试结果如下,有数据表现可以看到逆序在宏观上是优于正序的。

Result"com.alibaba.microbenchmark.forward.CountPerf.count":  3017436523.994 ±(99.9%) 74706077.393 ops/s [Average]  (min, avg, max) = (2586477493.002, 3017436523.994, 3090537220.013), stdev = 111816548.191  CI (99.9%): [2942730446.601, 3092142601.387](assumes normal distribution)# Run complete. Total time: 00:02:05Benchmark                        Mode  Cnt          Score          Error  Unitsc.a.m.backward.CountPerf.count  thrpt  30  3070589161.097 ± 30858669.885  ops/sc.a.m.forward.CountPerf.count  thrpt  30  3017436523.994 ± 74706077.393  ops/s

优化的Hessian2微基准测试

       HSF默认使用Hessian2进行序列化传输,而Hessian2在传输时,每次会捎带上类型元信息,这些在实际场景下对资源会产生一定的开销。HSF2.2会使用优化的Hessian2进行序列化,与Hessian2的不同在于,它会基于长连接级别缓存元信息,每次只会发送数据内容,由于只发送数据内容,所以资源开销会更少,我们对Hessian2和优化后的Hssian2做了基准测试,结果如下:

Benchmark                                  Mode  Cnt      Score      Error  Units

c.a.m.h.hessian.DeserialPerf.deserial      thrpt  60  147255.638 ±  1057.106  ops/s

c.a.m.h.hessian.SerialPerf.serial          thrpt  60  146336.439 ±  1199.087  ops/s

c.a.m.h.optihessian.DeserialPerf.deserial  thrpt  60  327482.489 ±  3366.174  ops/s

c.a.m.h.optihessian.SerialPerf.serial      thrpt  60  176988.488 ±  1233.302  ops/s

       优化后的hessian在序列化吞吐量上领先hessian2,达到每秒17W,反序列化出乎意料,超过hessian2两倍,达到32W每秒。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 211,265评论 6 490
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,078评论 2 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 156,852评论 0 347
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,408评论 1 283
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,445评论 5 384
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,772评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,921评论 3 406
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,688评论 0 266
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,130评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,467评论 2 325
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,617评论 1 340
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,276评论 4 329
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,882评论 3 312
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,740评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,967评论 1 265
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,315评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,486评论 2 348

推荐阅读更多精彩内容