Swift-斐波那契数列

斐波那契数列也被称之为黄金分割数列,费波那契数列由0和1开始,之后的费波那契系数就由之前的两数相加,
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233……
算法实现起来也比较简单:

func fibonacci(n:NSInteger)->NSInteger{
    if n<=0 {
        return 0
    }
    if n==1 || n==2 {
        return 1
    }
    return fibonacci(n-1)+fibonacci(n-2)
}

for index in 0...13 {
    print("FlyELephant-第\(index)项的值:\(fibonacci(index))")
}

上面的递归,如果设置为50就会感觉运行特别慢,所以斐波那契数列通过递归实现并不是特别好,还好可以循环来解决:

//0、1、1、2、3、5、8、13、21、34
    func fibonacci(n:Int) -> Int {
        if n <= 0 {
            return 0
        }
        
        if n == 1 {
            return 1
        }
        
        var firstNum:Int = 0
        var secondNum:Int = 1
        var result:Int = 0
        for _ in 2...n {
            result = secondNum + firstNum
            firstNum = secondNum
            secondNum = result
        }
        return result
    }

for index in 0...10 {
    print("第\(index)项结果:\(fbonacciLoop(index))")
}

青蛙与台阶

一只青蛙一次可以跳上 1 级台阶,也可以跳上2 级。青蛙跳上一个n级的台阶总共有多少种跳法,这是简单的斐波那契数列:

func jumpFloor(n:NSInteger)->NSInteger {
    if n<=0 {
        return 0
    }
    
    if n==1 {
        return 1
    }
    
    if n==2 {
        return 2
    }
    
    return jumpFloor(n-1)+jumpFloor(n-2)
}

for index in 1...10 {
    print("\(index)级台阶的跳法:\(jumpFloor(index))")
}

上面的题目还有一个变通问题,一只青蛙一次可以跳上1级台阶,也可以跳上2 级……也可以跳上n 级,青蛙跳上一个n级的台阶总共有多少种跳法?

简单的分析一下假设F(0)=1,那么
F(1)=1
F(2)=F(1)+F(0)
F(3)=F(2)+F(1)+F(0)
F(n-1)=F(n-2)+...+F(0)
F(n)=F(n-1)+F(n-2)+..F(0)
F(n)=2*F(n-1)
代码实现:

func jumpLoopFloor(n:NSInteger)->NSInteger {
    if n<=0 {
        return 0
    }
    
    if n==1 {
        return 1
    }
    
    return 2*jumpLoopFloor(n-1)
}

for index in 1...10 {
    print("\(index)级台阶跳法:\(jumpLoopFloor(index))")
}
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,383评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,522评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,852评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,621评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,741评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,929评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,076评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,803评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,265评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,582评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,716评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,395评论 4 333
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,039评论 3 316
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,798评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,027评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,488评论 2 361
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,612评论 2 350

推荐阅读更多精彩内容