guava Cache源码分析(二)

一、Guava的设计思想###

之前一篇短文,简要的概括了一下GuavaCache具有的一些特性。例如像缓存淘汰、删除监听和缓存刷新等。这次主要写一些Guava Cache是怎样实现这些特性的。
GuavaCache的源码在 https://github.com/google/guava
GuavaCache的设计是类似与ConcurrentHashMap的,主要靠锁的细化,来减小并发,同时通过Hash算法来加快检索速度。但是GuavaCahce和ConcurrentHash不同的是GuavaCache要支持很多的Cache特性,所以设计上还是很比较复杂的。

二、源码的分析###

这里我们主要以LoadingCache为例子来分析GuavaCache的结构和实现,首先Wiki的例子是:

LoadingCache<Key, Graph> graphs = CacheBuilder.newBuilder()
       .maximumSize(1000)
       .expireAfterWrite(10, TimeUnit.MINUTES)
       .removalListener(MY_LISTENER)
       .build(
           new CacheLoader<Key, Graph>() {
             public Graph load(Key key) throws AnyException {
               return createExpensiveGraph(key);
             }
           });

这里GuavaCache主要采用builder的模式,CacheBuilder的每一个方法都返回这个CacheBuilder知道build方法的调用。
那么我们先看一下CacheBuilder的各个方法:

   /**
   *
   * 指定一个Cahce的大小上限,当Cache中的数据将要达到上限的时候淘汰掉不常用的。
   * Specifies the maximum number of entries the cache may contain. Note that the cache <b>may evict
   * an entry before this limit is exceeded</b>. As the cache size grows close to the maximum, the
   * cache evicts entries that are less likely to be used again. For example, the cache may evict an
   * entry because it hasn't been used recently or very often.
   *
   * <p>When {@code size} is zero, elements will be evicted immediately after being loaded into the
   * cache. This can be useful in testing, or to disable caching temporarily without a code change.
   *
   * <p>This feature cannot be used in conjunction with {@link #maximumWeight}.
   *
   * @param size the maximum size of the cache
   * @return this {@code CacheBuilder} instance (for chaining)
   * @throws IllegalArgumentException if {@code size} is negative
   * @throws IllegalStateException if a maximum size or weight was already set
   */
  public CacheBuilder<K, V> maximumSize(long size) {
    checkState(
        this.maximumSize == UNSET_INT, "maximum size was already set to %s", this.maximumSize);
    checkState(
        this.maximumWeight == UNSET_INT,
        "maximum weight was already set to %s",
        this.maximumWeight);
    checkState(this.weigher == null, "maximum size can not be combined with weigher");
    checkArgument(size >= 0, "maximum size must not be negative");
    this.maximumSize = size;
    return this;

状态检测之后就是执行了一个赋值操作。
同理

 public CacheBuilder<K, V> expireAfterWrite(long duration, TimeUnit unit) {
    checkState(
        expireAfterWriteNanos == UNSET_INT,
        "expireAfterWrite was already set to %s ns",
        expireAfterWriteNanos);
    checkArgument(duration >= 0, "duration cannot be negative: %s %s", duration, unit);
    this.expireAfterWriteNanos = unit.toNanos(duration);
    return this;
  }
  public <K1 extends K, V1 extends V> CacheBuilder<K1, V1> removalListener(
      RemovalListener<? super K1, ? super V1> listener) {
    checkState(this.removalListener == null);

    // safely limiting the kinds of caches this can produce
    @SuppressWarnings("unchecked")
    CacheBuilder<K1, V1> me = (CacheBuilder<K1, V1>) this;
    me.removalListener = checkNotNull(listener);
    return me;
  }

执行build方法:

  public <K1 extends K, V1 extends V> LoadingCache<K1, V1> build(
      CacheLoader<? super K1, V1> loader) {
    checkWeightWithWeigher();
    return new LocalCache.LocalLoadingCache<K1, V1>(this, loader);
  }

这里主要返回一个LocalCache.LocalLoadingCache,这是LocalCache的一个内部类,到这里GuavaCahce真正的存储结构出现了,LocalLoadingCache继承了LocalManualCache实现了LoadingCache接口。实例化的时候,根据CacheBuilder构建了一个LocalCache,而LoadingCache和LocalManualCache只是在LocalCache上做了代理。

LocalLoadingCache(    CacheBuilder<? super K, ? super V> builder, CacheLoader<? super K, V> loader) {  super(new LocalCache<K, V>(builder, checkNotNull(loader)));}

private LocalManualCache(LocalCache<K, V> localCache) {  this.localCache = localCache;}

那么LocalCache的构建是什么样的呢?

  LocalCache(
      CacheBuilder<? super K, ? super V> builder, @Nullable CacheLoader<? super K, V> loader) {
    //并发度,seg的个数
    concurrencyLevel = Math.min(builder.getConcurrencyLevel(), MAX_SEGMENTS);
    //key强弱关系
    keyStrength = builder.getKeyStrength();
    //value的强弱关系
    valueStrength = builder.getValueStrength();
    //比较器,类似于Object.equal
    keyEquivalence = builder.getKeyEquivalence();
    valueEquivalence = builder.getValueEquivalence();
    //最大权重,weigher为null那么maxWeight=maxsize
    maxWeight = builder.getMaximumWeight();
    //entry的权重,用于淘汰策略
    weigher = builder.getWeigher();
    //lastAccess之后多长时间删除
    expireAfterAccessNanos = builder.getExpireAfterAccessNanos();
    //在写入后长时间之后删除
    expireAfterWriteNanos = builder.getExpireAfterWriteNanos();
    //刷新的时间间隔
    refreshNanos = builder.getRefreshNanos();
    //entry删除之后的Listener
    removalListener = builder.getRemovalListener();
    //删除监听的队列
    removalNotificationQueue =
        (removalListener == NullListener.INSTANCE)
            ? LocalCache.<RemovalNotification<K, V>>discardingQueue()
            : new ConcurrentLinkedQueue<RemovalNotification<K, V>>();
    //时钟
    ticker = builder.getTicker(recordsTime());
    //创建Entry的Factory
    entryFactory = EntryFactory.getFactory(keyStrength, usesAccessEntries(), usesWriteEntries());
    //缓存的状态统计器,用于统计缓存命中率等
    globalStatsCounter = builder.getStatsCounterSupplier().get();

    //加载数据的Loader
    defaultLoader = loader;

    //初始化HashTable的容量
    int initialCapacity = Math.min(builder.getInitialCapacity(), MAXIMUM_CAPACITY);

    //没有设置权重设置但是有maxsize的设置,那么需要减小容量的设置
    if (evictsBySize() && !customWeigher()) {
      initialCapacity = Math.min(initialCapacity, (int) maxWeight);
    }

    // Find the lowest power-of-two segmentCount that exceeds concurrencyLevel, unless
    // maximumSize/Weight is specified in which case ensure that each segment gets at least 10
    // entries. The special casing for size-based eviction is only necessary because that eviction
    // happens per segment instead of globally, so too many segments compared to the maximum size
    // will result in random eviction behavior.

    //类似于ConcurentHashMap
    int segmentShift = 0;//seg的掩码
    int segmentCount = 1;//seg的个数
    //如果seg的个数事故小于并发度的
    //初始化并发度为4,默认的maxWeight是-1,默认是不驱逐
    while (segmentCount < concurrencyLevel && (!evictsBySize() || segmentCount * 20 <= maxWeight)) {
      ++segmentShift;
      segmentCount <<= 1;
    }
    this.segmentShift = 32 - segmentShift;
    segmentMask = segmentCount - 1;

    this.segments = newSegmentArray(segmentCount);

    int segmentCapacity = initialCapacity / segmentCount;
    if (segmentCapacity * segmentCount < initialCapacity) {
      ++segmentCapacity;
    }

    int segmentSize = 1;
    while (segmentSize < segmentCapacity) {
      segmentSize <<= 1;
    }
    //默认不驱逐
    if (evictsBySize()) {
      // Ensure sum of segment max weights = overall max weights
      long maxSegmentWeight = maxWeight / segmentCount + 1;
      long remainder = maxWeight % segmentCount;
      for (int i = 0; i < this.segments.length; ++i) {
        if (i == remainder) {
          maxSegmentWeight--;
        }
        this.segments[i] =
            createSegment(segmentSize, maxSegmentWeight, builder.getStatsCounterSupplier().get());
      }
    } else {
      //为每一个Segment进行初始化
      for (int i = 0; i < this.segments.length; ++i) {
        this.segments[i] =
            createSegment(segmentSize, UNSET_INT, builder.getStatsCounterSupplier().get());
      }
    }
  }

初始化的时候初始化一些配置等,可以看到和ConcurrentHashMap基本一致,但是引入了一些其他的概念。

那么回过头看一下,最关键的两个方法,首先是put方法:

    @Override
    public void put(K key, V value) {
      localCache.put(key, value);
    }
  /**
   * 代理到Segment的put方法
   * @param key
   * @param value
   * @return
   */
  @Override
  public V put(K key, V value) {
    checkNotNull(key);
    checkNotNull(value);
    int hash = hash(key);
    return segmentFor(hash).put(key, hash, value, false);
  }
      @Nullable
    V put(K key, int hash, V value, boolean onlyIfAbsent) {
      //保证线程安全,加锁
      lock();
      try {
        //获取当前的时间
        long now = map.ticker.read();
        //清除队列中的元素
        preWriteCleanup(now);
        //localCache的Count+1
        int newCount = this.count + 1;
        //扩容操作
        if (newCount > this.threshold) { // ensure capacity
          expand();
          newCount = this.count + 1;
        }
        //获取当前Entry中的HashTable的Entry数组
        AtomicReferenceArray<ReferenceEntry<K, V>> table = this.table;
        //定位
        int index = hash & (table.length() - 1);
        //获取第一个元素
        ReferenceEntry<K, V> first = table.get(index);
        //遍历整个Entry链表
        // Look for an existing entry.
        for (ReferenceEntry<K, V> e = first; e != null; e = e.getNext()) {
          K entryKey = e.getKey();
          if (e.getHash() == hash
              && entryKey != null
              && map.keyEquivalence.equivalent(key, entryKey)) {
            // We found an existing entry.
            //如果找到相应的元素
            ValueReference<K, V> valueReference = e.getValueReference();
            //获取value
            V entryValue = valueReference.get();
            //如果entry的value为null,可能被GC掉了
            if (entryValue == null) {
              ++modCount;
              if (valueReference.isActive()) {
                enqueueNotification( //减小锁时间的开销
                    key, hash, entryValue, valueReference.getWeight(), RemovalCause.COLLECTED);
                //利用原来的key并且刷新value
                setValue(e, key, value, now);//存储数据,并且将新增加的元素写入两个队列中
                newCount = this.count; // count remains unchanged
              } else {
                setValue(e, key, value, now);//存储数据,并且将新增加的元素写入两个队列中
                newCount = this.count + 1;
              }
              this.count = newCount; // write-volatile,保证内存可见性
              //淘汰缓存
              evictEntries(e);
              return null;
            } else if (onlyIfAbsent) {//原来的Entry中包含指定key的元素,所以读取一次,读取操作需要更新Access队列
              // Mimic
              // "if (!map.containsKey(key)) ...
              // else return map.get(key);
              recordLockedRead(e, now);
              return entryValue;
            } else {
              //如果value不为null,那么更新value
              // clobber existing entry, count remains unchanged
              ++modCount;
              //将replace的Cause添加到队列中
              enqueueNotification(
                  key, hash, entryValue, valueReference.getWeight(), RemovalCause.REPLACED);
              setValue(e, key, value, now);//存储数据,并且将新增加的元素写入两个队列中
              //数据的淘汰
              evictEntries(e);
              return entryValue;
            }
          }
        }
        //如果目标的entry不存在,那么新建entry
        // Create a new entry.
        ++modCount;
        ReferenceEntry<K, V> newEntry = newEntry(key, hash, first);
        setValue(newEntry, key, value, now);
        table.set(index, newEntry);
        newCount = this.count + 1;
        this.count = newCount; // write-volatile
        //淘汰多余的entry
        evictEntries(newEntry);
        return null;
      } finally {
        //解锁
        unlock();
        //处理刚刚的remove Cause
        postWriteCleanup();
      }
    }

代码比较长,看上去是比较恶心的,注释写了一些,那么重点说几个注意的点:

  1. 加锁,和ConcurrentHashMap一样,加锁是为了保证线程安全。
  2. preWriteCleanup:在每一次做put之前都要清理一下,清理什么?看下代码:
    @GuardedBy("this")
    void preWriteCleanup(long now) {
      runLockedCleanup(now);
    }
    void runLockedCleanup(long now) {
      if (tryLock()) {
        try {
          drainReferenceQueues();
          expireEntries(now); // calls drainRecencyQueue
          readCount.set(0);
        } finally {
          unlock();
        }
      }
    }
    @GuardedBy("this")
    void drainReferenceQueues() {
      if (map.usesKeyReferences()) {
        drainKeyReferenceQueue();
      }
      if (map.usesValueReferences()) {
        drainValueReferenceQueue();
      }
    }
    @GuardedBy("this")
    void drainKeyReferenceQueue() {
      Reference<? extends K> ref;
      int i = 0;
      while ((ref = keyReferenceQueue.poll()) != null) {
        @SuppressWarnings("unchecked")
        ReferenceEntry<K, V> entry = (ReferenceEntry<K, V>) ref;
        map.reclaimKey(entry);
        if (++i == DRAIN_MAX) {
          break;
        }
      }
    }

看上去可能有点懵,其实它要做的就是清空两个队列keyReferenceQueue和valueReferenceQueue,这两个队列是什么东西?其实是引用使用队列。
GuavaCache为了支持弱引用和软引用,引入了引用清空队列。同时将key和Value包装成了keyReference和valueReference。
在创建Entry的时候:

    @GuardedBy("this")
    ReferenceEntry<K, V> newEntry(K key, int hash, @Nullable ReferenceEntry<K, V> next) {
      return map.entryFactory.newEntry(this, checkNotNull(key), hash, next);
    }

利用map.entryFactory创建Entry。Factory的初始化是通过

entryFactory = EntryFactory.getFactory(keyStrength, usesAccessEntries(), usesWriteEntries());

实现的。keyStrength是我们在初始化时指定的引用强度。可选的有工厂有:

    static final EntryFactory[] factories = {
      STRONG,
      STRONG_ACCESS,
      STRONG_WRITE,
      STRONG_ACCESS_WRITE,
      WEAK,
      WEAK_ACCESS,
      WEAK_WRITE,
      WEAK_ACCESS_WRITE,
    };

通过相应的工厂创建对应的Entry,这里主要说一下WeakEntry:

    WEAK {
      @Override
      <K, V> ReferenceEntry<K, V> newEntry(
          Segment<K, V> segment, K key, int hash, @Nullable ReferenceEntry<K, V> next) {
        return new WeakEntry<K, V>(segment.keyReferenceQueue, key, hash, next);
      }
    },
  /**
   * Used for weakly-referenced keys.
   */
  static class WeakEntry<K, V> extends WeakReference<K> implements ReferenceEntry<K, V> {
    WeakEntry(ReferenceQueue<K> queue, K key, int hash, @Nullable ReferenceEntry<K, V> next) {
      super(key, queue);
      this.hash = hash;
      this.next = next;
    }

    @Override
    public K getKey() {
      return get();
    }

    /*
     * It'd be nice to get these for free from AbstractReferenceEntry, but we're already extending
     * WeakReference<K>.
     */

    // null access

    @Override
    public long getAccessTime() {
      throw new UnsupportedOperationException();
    }

    @Override
    public void setAccessTime(long time) {
      throw new UnsupportedOperationException();
    }

    @Override
    public ReferenceEntry<K, V> getNextInAccessQueue() {
      throw new UnsupportedOperationException();
    }

    @Override
    public void setNextInAccessQueue(ReferenceEntry<K, V> next) {
      throw new UnsupportedOperationException();
    }

    @Override
    public ReferenceEntry<K, V> getPreviousInAccessQueue() {
      throw new UnsupportedOperationException();
    }

    @Override
    public void setPreviousInAccessQueue(ReferenceEntry<K, V> previous) {
      throw new UnsupportedOperationException();
    }

    // null write

    @Override
    public long getWriteTime() {
      throw new UnsupportedOperationException();
    }

    @Override
    public void setWriteTime(long time) {
      throw new UnsupportedOperationException();
    }

    @Override
    public ReferenceEntry<K, V> getNextInWriteQueue() {
      throw new UnsupportedOperationException();
    }

    @Override
    public void setNextInWriteQueue(ReferenceEntry<K, V> next) {
      throw new UnsupportedOperationException();
    }

    @Override
    public ReferenceEntry<K, V> getPreviousInWriteQueue() {
      throw new UnsupportedOperationException();
    }

    @Override
    public void setPreviousInWriteQueue(ReferenceEntry<K, V> previous) {
      throw new UnsupportedOperationException();
    }

    // The code below is exactly the same for each entry type.

    final int hash;
    final ReferenceEntry<K, V> next;
    volatile ValueReference<K, V> valueReference = unset();

    @Override
    public ValueReference<K, V> getValueReference() {
      return valueReference;
    }

    @Override
    public void setValueReference(ValueReference<K, V> valueReference) {
      this.valueReference = valueReference;
    }

    @Override
    public int getHash() {
      return hash;
    }

    @Override
    public ReferenceEntry<K, V> getNext() {
      return next;
    }
  }

WeakEntry继承了WeakReference实现了ReferenceEntry,也就是说这个引用是弱引用。WeakEntry引用的key和Value随时可能会被回收。构造的时候参数里面有ReferenceQueue<K> queue,这个就是我们上面提到的KeyReferenceQueue,所以在Key被GC掉的时候,会自动的将引用加入到ReferenceQueue这样我们就能处理对应的Entry了。Value也是一样的。是不是觉得十分牛逼?
回到正题清理KeyReferenceQueue:

    @GuardedBy("this")
    void drainKeyReferenceQueue() {
      Reference<? extends K> ref;
      int i = 0;
      while ((ref = keyReferenceQueue.poll()) != null) {
        @SuppressWarnings("unchecked")
        ReferenceEntry<K, V> entry = (ReferenceEntry<K, V>) ref;
        map.reclaimKey(entry);
        if (++i == DRAIN_MAX) {
          break;
        }
      }
    }

    void reclaimKey(ReferenceEntry<K, V> entry) {
    int hash = entry.getHash();
    segmentFor(hash).reclaimKey(entry, hash);
  }

    /**
     * Removes an entry whose key has been garbage collected.
     */
    boolean reclaimKey(ReferenceEntry<K, V> entry, int hash) {
      lock();
      try {
        int newCount = count - 1;
        AtomicReferenceArray<ReferenceEntry<K, V>> table = this.table;
        int index = hash & (table.length() - 1);
        ReferenceEntry<K, V> first = table.get(index);

        for (ReferenceEntry<K, V> e = first; e != null; e = e.getNext()) {
          if (e == entry) {
            ++modCount;
            ReferenceEntry<K, V> newFirst =
                removeValueFromChain(
                    first,
                    e,
                    e.getKey(),
                    hash,
                    e.getValueReference().get(),
                    e.getValueReference(),
                    RemovalCause.COLLECTED);
            newCount = this.count - 1;
            table.set(index, newFirst);
            this.count = newCount; // write-volatile
            return true;
          }
        }

        return false;
      } finally {
        unlock();
        postWriteCleanup();
      }
    }

上面就是清理过程了,如果发现key或者value被GC了,那么会在put的时候触发清理。
3.setValue都干了什么?setValue其实是将value写入Entry,但是这是一个写操作,所以会刷新上一次写的时间,但是这是根据什么维护的呢?

    /**
     * Sets a new value of an entry. Adds newly created entries at the end of the access queue.
     */
    @GuardedBy("this")
    void setValue(ReferenceEntry<K, V> entry, K key, V value, long now) {
      ValueReference<K, V> previous = entry.getValueReference();
      int weight = map.weigher.weigh(key, value);
      checkState(weight >= 0, "Weights must be non-negative");

      ValueReference<K, V> valueReference =
          map.valueStrength.referenceValue(this, entry, value, weight);
      entry.setValueReference(valueReference);
      //写入队列
      recordWrite(entry, weight, now);
      previous.notifyNewValue(value);
    }

        /**
     * Updates eviction metadata that {@code entry} was just written. This currently amounts to
     * adding {@code entry} to relevant eviction lists.
     */
    @GuardedBy("this")
    void recordWrite(ReferenceEntry<K, V> entry, int weight, long now) {
      // we are already under lock, so drain the recency queue immediately
      drainRecencyQueue();
      totalWeight += weight;

      if (map.recordsAccess()) {
        entry.setAccessTime(now);
      }
      if (map.recordsWrite()) {
        entry.setWriteTime(now);
      }
      accessQueue.add(entry);
      writeQueue.add(entry);
    }

其实GuavaCache会维护两个队列一个Write队列和一个Access队列,用这两个队列来实现最近读和最近写的清除操作,我们可以猜测这两个队列需要有序,同时也需要能快速定位元素。以Access队列为例:

  /**
   * A custom queue for managing access order. Note that this is tightly integrated with
   * {@code ReferenceEntry}, upon which it reliese to perform its linking.
   *
   * <p>Note that this entire implementation makes the assumption that all elements which are in the
   * map are also in this queue, and that all elements not in the queue are not in the map.
   *
   * <p>The benefits of creating our own queue are that (1) we can replace elements in the middle of
   * the queue as part of copyWriteEntry, and (2) the contains method is highly optimized for the
   * current model.
   */
  static final class AccessQueue<K, V> extends AbstractQueue<ReferenceEntry<K, V>> {
    final ReferenceEntry<K, V> head =
        new AbstractReferenceEntry<K, V>() {

          @Override
          public long getAccessTime() {
            return Long.MAX_VALUE;
          }

          @Override
          public void setAccessTime(long time) {}

          ReferenceEntry<K, V> nextAccess = this;

          @Override
          public ReferenceEntry<K, V> getNextInAccessQueue() {
            return nextAccess;
          }

          @Override
          public void setNextInAccessQueue(ReferenceEntry<K, V> next) {
            this.nextAccess = next;
          }

          ReferenceEntry<K, V> previousAccess = this;

          @Override
          public ReferenceEntry<K, V> getPreviousInAccessQueue() {
            return previousAccess;
          }

          @Override
          public void setPreviousInAccessQueue(ReferenceEntry<K, V> previous) {
            this.previousAccess = previous;
          }
        };

    // implements Queue

    @Override
    public boolean offer(ReferenceEntry<K, V> entry) {
      // unlink
      connectAccessOrder(entry.getPreviousInAccessQueue(), entry.getNextInAccessQueue());

      // add to tail
      connectAccessOrder(head.getPreviousInAccessQueue(), entry);
      connectAccessOrder(entry, head);

      return true;
    }

    @Override
    public ReferenceEntry<K, V> peek() {
      ReferenceEntry<K, V> next = head.getNextInAccessQueue();
      return (next == head) ? null : next;
    }

    @Override
    public ReferenceEntry<K, V> poll() {
      ReferenceEntry<K, V> next = head.getNextInAccessQueue();
      if (next == head) {
        return null;
      }

      remove(next);
      return next;
    }
      head.setNextInAccessQueue(head);
      head.setPreviousInAccessQueue(head);
    }
    }
  }

重点关注几个点:offer方法,offer主要做了几个事情:
1.将Entry和它的前节点后节点的关联断开,这样就需要Entry中维护它的前向和后向引用。
2.将新增加的节点加入到队列的尾部,寻找尾节点用了head.getPreviousInAccessQueue()。可以看出来是个环形队列。
3.将新增加的节点,或者新调整出来的节点设为尾部节点。

通过这几点,可以得知,最近更新的节点一定是在尾部的,head后面的节点一定是不活跃的,在每一次清除过期节点的时候一定清除head之后的超时的节点,这点可以通过poll进行验证。

Write队列也是同理。也就是每次写入操作都会更新元素的引用和写入的时间,并且更新元素在读写队列中的位置。我又一次感觉它挺牛逼的。

4.evictEntries(e),item的淘汰,这个操作是在设置了Cache中能缓存最大条目的前提下触发的:

    /**
     * Performs eviction if the segment is over capacity. Avoids flushing the entire cache if the
     * newest entry exceeds the maximum weight all on its own.
     *
     * @param newest the most recently added entry
     */
    @GuardedBy("this")
    void evictEntries(ReferenceEntry<K, V> newest) {
      if (!map.evictsBySize()) {
        return;
      }

      drainRecencyQueue();

      // If the newest entry by itself is too heavy for the segment, don't bother evicting
      // anything else, just that
      if (newest.getValueReference().getWeight() > maxSegmentWeight) {
        if (!removeEntry(newest, newest.getHash(), RemovalCause.SIZE)) {
          throw new AssertionError();
        }
      }

      while (totalWeight > maxSegmentWeight) {
        ReferenceEntry<K, V> e = getNextEvictable();
        if (!removeEntry(e, e.getHash(), RemovalCause.SIZE)) {
          throw new AssertionError();
        }
      }
    }

这里主要做了几件事,首先判断是否开启淘汰,之后呢清理RecencyQueue,然后判断新增加的元素是否有很大的权重,如果是那么直接删掉,因为它太重了。最后判断是否权重已经大于上限,如果是的话那么我们就清除最近最少有使用的Entry,直到Weight小于上限。

    // TODO(fry): instead implement this with an eviction head
    @GuardedBy("this")
    ReferenceEntry<K, V> getNextEvictable() {
      for (ReferenceEntry<K, V> e : accessQueue) {
        int weight = e.getValueReference().getWeight();
        if (weight > 0) {
          return e;
        }
      }
      throw new AssertionError();
    }

这里比较容易疑惑的是:Weight是啥?其实如果不做设置Weight都是1,Weight上限就是maxSize。但是Guava允许自己定义Weight,那么上限就是maxWeight了。这部分可以看上面初始化部分。

5.removeListener:removeListener可以看到,在元素被覆盖的时候后注册了一个事件,同时在finnally里面进行了一次清理:


    /**
   * Notifies listeners that an entry has been automatically removed due to expiration, eviction, or
   * eligibility for garbage collection. This should be called every time expireEntries or
   * evictEntry is called (once the lock is released).
   */
  void processPendingNotifications() {
    RemovalNotification<K, V> notification;
    while ((notification = removalNotificationQueue.poll()) != null) {
      try {
        removalListener.onRemoval(notification);
      } catch (Throwable e) {
        logger.log(Level.WARNING, "Exception thrown by removal listener", e);
      }
    }
  }

可以看到为了减小put的开销,这里做了一个类似于异步的操作,并且在解锁之后做这样的操作来避免阻塞其他的put。

关于Guava的Put操作就分析完了,的确是够复杂的。下面看一下get部分:

    // LoadingCache methods
    //local cache的代理
    @Override
    public V get(K key) throws ExecutionException {
      return localCache.getOrLoad(key);
    }

      /**
   * 根据key获取value,如果获取不到进行load
   * @param key
   * @return
   * @throws ExecutionException
     */
  V getOrLoad(K key) throws ExecutionException {
    return get(key, defaultLoader);
  }

    V get(K key, CacheLoader<? super K, V> loader) throws ExecutionException {
    int hash = hash(checkNotNull(key));//hash——>rehash
    return segmentFor(hash).get(key, hash, loader);
  }

  // loading
    //进行指定key对应的value的获取,读取不加锁
    V get(K key, int hash, CacheLoader<? super K, V> loader) throws ExecutionException {
      //保证key-value不为null
      checkNotNull(key);
      checkNotNull(loader);

      try {
        if (count != 0) { // read-volatile  volatile读会刷新缓存,尽量保证可见性,如果为0那么直接load
          // don't call getLiveEntry, which would ignore loading values
          ReferenceEntry<K, V> e = getEntry(key, hash);
          //如果对应的Entry不为Null,证明值还在
          if (e != null) {
            long now = map.ticker.read();//获取当前的时间,根据当前的时间进行Live的数据的读取
            V value = getLiveValue(e, now);
            //元素不为null的话可以不刷新
            if (value != null) {
              recordRead(e, now);//为entry增加accessTime,同时加入recencyQueue
              statsCounter.recordHits(1);//更新当前的状态,增加为命中,可以用于计算命中率
              //判断当前有没有到刷新的时机,如果没有的话那么返回原值。否则进行刷新
              return scheduleRefresh(e, key, hash, value, now, loader);
            }
            //value为null,如果此时value正在刷新,那么此时等待刷新结果
            ValueReference<K, V> valueReference = e.getValueReference();
            if (valueReference.isLoading()) {
              return waitForLoadingValue(e, key, valueReference);
            }
          }
        }
        //如果取不到值,那么进行统一的加锁get
        // at this point e is either null or expired;
        return lockedGetOrLoad(key, hash, loader);
      } catch (ExecutionException ee) {
        Throwable cause = ee.getCause();
        if (cause instanceof Error) {
          throw new ExecutionError((Error) cause);
        } else if (cause instanceof RuntimeException) {
          throw new UncheckedExecutionException(cause);
        }
        throw ee;
      } finally {
        postReadCleanup();//每次Put和get之后都要进行一次Clean
      }
    }

get的实现和JDK1.6的ConcurrentHashMap思想一致,都是put加锁,但是get是用volatile保证。
这里主要做了几件事:

  1. 首先获取Entry,Entry不为null获取对应的Value,如果Value不为空,那么证明值还在,那么这时候判断一下是否要刷新直接返回了。否则判断目前引用是否在Loading,如果是就等待Loading结束。
  2. 如果取不到Entry或者Value为null 并且没有在Loading,那么这时候进行lockedGetOrLoad(),这是一个大活儿。
    V lockedGetOrLoad(K key, int hash, CacheLoader<? super K, V> loader) throws ExecutionException {
      ReferenceEntry<K, V> e;
      ValueReference<K, V> valueReference = null;
      LoadingValueReference<K, V> loadingValueReference = null;
      boolean createNewEntry = true;

      lock();//加锁,因为会改变数据结构
      try {
        // re-read ticker once inside the lock
        long now = map.ticker.read();
        preWriteCleanup(now);//清除引用队列,Acess队列和Write队列中过期的数据,这算是一次put操作

        int newCount = this.count - 1;
        AtomicReferenceArray<ReferenceEntry<K, V>> table = this.table;
        int index = hash & (table.length() - 1);
        ReferenceEntry<K, V> first = table.get(index);
        //定位目标元素
        for (e = first; e != null; e = e.getNext()) {
          K entryKey = e.getKey();
          if (e.getHash() == hash
              && entryKey != null
              && map.keyEquivalence.equivalent(key, entryKey)) {
            valueReference = e.getValueReference();
            //如果目前处在loading状态,不创建新元素
            if (valueReference.isLoading()) {
              createNewEntry = false;
            } else {
              V value = valueReference.get();
              if (value == null) { //可能被GC掉了,加入removeListener
                enqueueNotification(
                    entryKey, hash, value, valueReference.getWeight(), RemovalCause.COLLECTED);
              } else if (map.isExpired(e, now)) { //可能过期了
                // This is a duplicate check, as preWriteCleanup already purged expired
                // entries, but let's accomodate an incorrect expiration queue.
                enqueueNotification(
                    entryKey, hash, value, valueReference.getWeight(), RemovalCause.EXPIRED);
              } else {//目前就已经加载过了,返回
                recordLockedRead(e, now);
                statsCounter.recordHits(1);
                // we were concurrent with loading; don't consider refresh
                return value;
              }
              //删除在队列中相应的引用,因为后面要新创建
              // immediately reuse invalid entries
              writeQueue.remove(e);
              accessQueue.remove(e);
              this.count = newCount; // write-volatile
            }
            break;
          }
        }
        //创建新的Entry,但是此时是没有值的
        if (createNewEntry) {
          loadingValueReference = new LoadingValueReference<K, V>();

          if (e == null) {
            e = newEntry(key, hash, first);
            e.setValueReference(loadingValueReference);
            table.set(index, e);
          } else {
            e.setValueReference(loadingValueReference);
          }
        }
      } finally {
        unlock();
        postWriteCleanup();
      }

      if (createNewEntry) {
        try {
          // Synchronizes on the entry to allow failing fast when a recursive load is
          // detected. This may be circumvented when an entry is copied, but will fail fast most
          // of the time.
          synchronized (e) {
            return loadSync(key, hash, loadingValueReference, loader);
          }
        } finally {
          statsCounter.recordMisses(1);
        }
      } else {
        // The entry already exists. Wait for loading.
        return waitForLoadingValue(e, key, valueReference);
      }
    }

首先说一下为什么加锁,加锁的原因有两个:

  1. load算是一个写操作,改变数据结构,需要加锁。
  2. 为了避免缓存击穿,加锁一个防止缓存击穿的发生,当然是JVm级别的不是分布式级别的。

因为是写所以要进行preWriteCleanup,根据key定位一下Entry,如果能定位到,那么判断是否在Loading,如果是的话不创建新的Entry并且等待Loading结束。如果不是那么判断value是否为null和是否过期,如果是的话都要进行创建新Entry,如果都不是证明value是加载过了,那么更新下Access队列然后返回。
接下来清除一下Access和Write队列的元素,创建新的Entry。这里比较有意思:

   // at most one of loadSync/loadAsync may be called for any given LoadingValueReference
    //同步刷新
    V loadSync(
        K key,
        int hash,
        LoadingValueReference<K, V> loadingValueReference,
        CacheLoader<? super K, V> loader)
        throws ExecutionException {
      ListenableFuture<V> loadingFuture = loadingValueReference.loadFuture(key, loader);
      return getAndRecordStats(key, hash, loadingValueReference, loadingFuture);
    }

这里创建了一个loadingReference,这也就是之前看到的判断是否在Loading。如果是Loading状态那么表面有一个线程正在更新Cache,其他的线程等待就可以了。

这里可以看到其实也支持异步的刷新:

    ListenableFuture<V> loadAsync(
        final K key,
        final int hash,
        final LoadingValueReference<K, V> loadingValueReference,
        CacheLoader<? super K, V> loader) {
      final ListenableFuture<V> loadingFuture = loadingValueReference.loadFuture(key, loader);
      loadingFuture.addListener(
          new Runnable() {
            @Override
            public void run() {
              try {
                getAndRecordStats(key, hash, loadingValueReference, loadingFuture);
              } catch (Throwable t) {
                logger.log(Level.WARNING, "Exception thrown during refresh", t);
                loadingValueReference.setException(t);
              }
            }
          },
          directExecutor());
      return loadingFuture;
    }

后面更新的逻辑就不贴了。
从上面我们可以看到,对于每一次get都会去进行Access队列的更新,同时对于多线程的更新只会引起一个线程去load数据,对于不存在的数据,get时也会进行一次load操作。同时通过同步操作解决了缓存击穿的问题。不得不说GuavaCache设计的很巧妙。

其实Guava还有一个比较好玩的东西,asMap(),我们感觉GuavaCache像Map,但是还不完全是Map,那么就提供了一个方法以Map的视图去展现。
看下asMap()

    @Override
    public ConcurrentMap<K, V> asMap() {
      return localCache;
    }

其实就是localCache返回了,返回类型是ConcurrentMap,那么我们看看localCache的继承结构:

@GwtCompatible(emulated = true)
class LocalCache<K, V> extends AbstractMap<K, V> implements ConcurrentMap<K, V> {

果然和Map关系大大的,也就是说,LocalCache本身是个ConcurrentMap,但是对于LocalCache的这些map方法我们是调用不到的,因为我们只能用LoadingCache嘛。通过asMap我们能得到LocalCache,但是我们不能使用除了Map接口之外的方法,也就是说我们不能使用自动加载等一系列的功能。
正如官方Wiki说的:

Paste_Image.png

至此所有的核心源码分析完了,觉得有点恶心,源码这东西就要静下来细细的看,收获会很大。

由于文章比较长,如果有什么问题还请赐教。最后,祝自己这个苦逼码农圣诞快乐。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,384评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,845评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,148评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,640评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,731评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,712评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,703评论 3 415
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,473评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,915评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,227评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,384评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,063评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,706评论 3 324
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,302评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,531评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,321评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,248评论 2 352

推荐阅读更多精彩内容

  • Guava Cache以下的特性: automatic loading of entries into the c...
    小锄禾阅读 8,618评论 2 11
  • Spring Cloud为开发人员提供了快速构建分布式系统中一些常见模式的工具(例如配置管理,服务发现,断路器,智...
    卡卡罗2017阅读 134,647评论 18 139
  • java笔记第一天 == 和 equals ==比较的比较的是两个变量的值是否相等,对于引用型变量表示的是两个变量...
    jmychou阅读 1,495评论 0 3
  • Map 我们都知道 Map 是键值对关系的集合,并且键唯一,键一对一对应值。 关于 Map 的定义,大概就这些吧,...
    Anonymous___阅读 629评论 0 1
  • 一、基本数据类型 注释 单行注释:// 区域注释:/* */ 文档注释:/** */ 数值 对于byte类型而言...
    龙猫小爷阅读 4,258评论 0 16