令牌桶限流算法简单实现

简介

令牌桶作为限流算法之一,具体原理是一段时间内向桶里加入一定的token数,使用时进行扣减,判断扣减数和剩余令牌数之间的关系,这种限流的好处是更灵活,能够处理突发流量,有流量波峰时,令牌桶内提前已经放入了足够多的token数,流量一样可以通过。不过需要注意的是,限流保护的系统需要事先验证能扛住这么高的突发流量。

简单实现

使用变量availableTokens标识桶内令牌数,消费前先按时间加入对应的令牌数,然后对令牌数进行扣减。

public class TokenBucket {

    private final long capacity;
    private final double refillTokensPerOneMillis;
    private double availableTokens;
    private long lastRefillTimestamp;

    public TokenBucket(long capacity, long refillTokens, long refillPeriodMillis) {
        this.capacity = capacity;
        this.refillTokensPerOneMillis = (double) refillTokens / (double) refillPeriodMillis;
        this.availableTokens = capacity;
        this.lastRefillTimestamp = System.currentTimeMillis();
    }

    synchronized public boolean tryConsume(int numberTokens) {
        refill();
        if (availableTokens < numberTokens) {
            return false;
        } else {
            availableTokens -= numberTokens;
            return true;
        }
    }

    private void refill() {
        long currentTimeMillis = System.currentTimeMillis();
        if (currentTimeMillis > lastRefillTimestamp) {
            long millisSinceLastRefill = currentTimeMillis - lastRefillTimestamp;
            double refill = millisSinceLastRefill * refillTokensPerOneMillis;
            this.availableTokens = Math.min(capacity, availableTokens + refill);
            this.lastRefillTimestamp = currentTimeMillis;
        }
    }

    public static void main(String[] args) throws InterruptedException {
        TokenBucket tokenBucket = new TokenBucket(10, 10, 1000);
        while (true) {
            if (tokenBucket.tryConsume(2)) {
                System.out.println("pass");
            } else {
                System.out.println("block");
            }
            Thread.sleep(100);
            System.out.println("当前可用token数目为:" + tokenBucket.availableTokens);
        }
    }
}

sentinel中应用

利用token数进行预热限流,利用了令牌桶的思维,根据桶内的令牌数取判断预热是否完成,令牌数多的情况下说明当前流量较小,需要进行预热,预热时按warningQps进行计算。

public class WarmUpController implements TrafficShapingController {

    protected double count;
    private int coldFactor;
    protected int warningToken = 0;
    private int maxToken;
    protected double slope;

    protected AtomicLong storedTokens = new AtomicLong(0);
    protected AtomicLong lastFilledTime = new AtomicLong(0);

    public WarmUpController(double count, int warmUpPeriodInSec, int coldFactor) {
        construct(count, warmUpPeriodInSec, coldFactor);
    }

    public WarmUpController(double count, int warmUpPeriodInSec) {
        construct(count, warmUpPeriodInSec, 3);
    }

    private void construct(double count, int warmUpPeriodInSec, int coldFactor) {

        if (coldFactor <= 1) {
            throw new IllegalArgumentException("Cold factor should be larger than 1");
        }

        this.count = count;

        this.coldFactor = coldFactor;

        // thresholdPermits = 0.5 * warmupPeriod / stableInterval.
        // warningToken = 100;
        warningToken = (int)(warmUpPeriodInSec * count) / (coldFactor - 1);
        // / maxPermits = thresholdPermits + 2 * warmupPeriod /
        // (stableInterval + coldInterval)
        // maxToken = 200
        maxToken = warningToken + (int)(2 * warmUpPeriodInSec * count / (1.0 + coldFactor));

        // slope
        // slope = (coldIntervalMicros - stableIntervalMicros) / (maxPermits
        // - thresholdPermits);
        slope = (coldFactor - 1.0) / count / (maxToken - warningToken);

    }

    @Override
    public boolean canPass(Node node, int acquireCount) {
        return canPass(node, acquireCount, false);
    }

    @Override
    public boolean canPass(Node node, int acquireCount, boolean prioritized) {
        long passQps = (long) node.passQps();

        long previousQps = (long) node.previousPassQps();
        syncToken(previousQps);

        // 开始计算它的斜率
        // 如果进入了警戒线,开始调整他的qps
        long restToken = storedTokens.get();
        if (restToken >= warningToken) {
            long aboveToken = restToken - warningToken;
            // 消耗的速度要比warning快,但是要比慢
            // current interval = restToken*slope+1/count
            double warningQps = Math.nextUp(1.0 / (aboveToken * slope + 1.0 / count));
            if (passQps + acquireCount <= warningQps) {
                return true;
            }
        } else {
            if (passQps + acquireCount <= count) {
                return true;
            }
        }

        return false;
    }

    protected void syncToken(long passQps) {
        long currentTime = TimeUtil.currentTimeMillis();
        currentTime = currentTime - currentTime % 1000;
        long oldLastFillTime = lastFilledTime.get();
        if (currentTime <= oldLastFillTime) {
            return;
        }

        long oldValue = storedTokens.get();
        long newValue = coolDownTokens(currentTime, passQps);

        if (storedTokens.compareAndSet(oldValue, newValue)) {
            long currentValue = storedTokens.addAndGet(0 - passQps);
            if (currentValue < 0) {
                storedTokens.set(0L);
            }
            lastFilledTime.set(currentTime);
        }

    }

    private long coolDownTokens(long currentTime, long passQps) {
        long oldValue = storedTokens.get();
        long newValue = oldValue;

        // 添加令牌的判断前提条件:
        // 当令牌的消耗程度远远低于警戒线的时候
        if (oldValue < warningToken) {
            newValue = (long)(oldValue + (currentTime - lastFilledTime.get()) * count / 1000);
        } else if (oldValue > warningToken) {
            if (passQps < (int)count / coldFactor) {
                newValue = (long)(oldValue + (currentTime - lastFilledTime.get()) * count / 1000);
            }
        }
        return Math.min(newValue, maxToken);
    }

}
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,372评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,368评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,415评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,157评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,171评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,125评论 1 297
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,028评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,887评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,310评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,533评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,690评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,411评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,004评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,659评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,812评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,693评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,577评论 2 353

推荐阅读更多精彩内容