谷歌大脑:AI生AI,子子孙孙无穷匮也

Photo by Daniel Cheung on Unsplash

这是一只AI生出的小AI
谷歌大脑的Quoc Le团队,用神经网络架构搜索 (NAS) ,发现了一个目标检测模型。长这样:

△ 看不清请把手机横过来

它的准确率和速度都超过了大前辈Mask-RCNN;也超过了另外两只行业精英:FPN和SSD。
模型叫做NAS-FPN。大佬Quoc Le说,它的长相完全在想象之外,十分前卫:

△ 喜讯发布一日,已收获600颗心

AI的脑洞果然和人类不一样。对比一下,目标检测界的传统方法FPN (特征金字塔网络) 长这样:

FPN

谷歌大脑说,虽然网络架构搜索 (NAS) 并不算新颖,但他们用的搜索空间与众不同。
怎么搜出来?
在NAS-FPN出现之前,地球上最强大的目标检测模型,架构都是人类手动设计的。

△ 这是Mask-RCNN的成果

NAS是一种自动调参的方法,调的不是训练超参数,是网络架构超参数:比如网络多少层、每层都是什么算子、卷积层里的过滤器大小等等。
它可以在许多许多不同的架构里,快速找到性能最好的那一个。


所以,要把目标检测的常用架构FPN (特征金字塔网络) 和NAS结合起来,发现那只最厉害的AI。
但问题是搜索空间太大,特征横跨许多不同的尺度。
于是,团队基于RetinaNet框架,设计了一个新的搜索空间:
这里,一个FPN是由许多的“合并单元 (Merging Cells) ”组成的。
是要把输入的不同尺度/分辨率的特征层,合并到RetinaNet的表征里去。

具体怎样合并?这是由一个RNN控制器来决定的,经过四个步骤:
一是,从输入里任选一个特征层;二是,从输入里再选一个特征层;三是,选择输出的特征分辨率;四是,选择一种二进制运算,把两个特征层 (用上一步选定的分辨率) 合并起来。
第四步有两种运算可选,一种是加和 (sum) ,一种是全局池化 (Global Pooling) 。两个都是简单、高效的运算,不会附加任何带训练的参数。

一个Cell就这样合并出来了,但这只是中间结果。把它加到刚才的输入列表里,和其他特征层排在一起。
然后,就可以重新选两个特征层,重复上面的步骤一、二、四,保持分辨率不变。
(团队说,如果要避免选到相同分辨率的两个特征层,就不要用步长8。2和4是比较合适的步长。)
就这样,不停地生成新的Cell。
停止搜索的时候,最后生成的5个Cell,会组成“被选中的FPN”出道。

那么问题来了,搜索什么时候能停?
不是非要全部搜索完,随时都可以退出。反正分辨率是不变的,FPN是可以随意扩展的。
团队设定了Early Exit (提前退出) 机制,用来权衡速度和准确率。
最终发布NAS-FPN的,是AI跑了8,000步之后,选取最末5个Cell生成的网络。回顾一下:

从原始FPN (下图a) 开始,它走过的路大概是这样的:

跑得越久,生成的网络就越蜿蜒。
模型怎么样?
NAS-FPN可以依托于各种骨架:MobileNet,ResNet,AmoebaNet……
团队选择的是AmoebaNet骨架。
那么,用COCO test-dev数据集,和那些强大的前辈比一比高清大图检测效果。
比赛结果发布:

NAS-FPN拿到了48.3的AP分,超过了Mask-RCNN,并且用时更短 (右边第二列是时间) 。
另外一场比赛,是移动检测 (320x320) ,NAS-FPN的轻量版本,跑在MobileNet2骨架上:

超过了厉害的前辈SSD轻量版,虽然,还是没有赶上YOLOv3。

△ YOLOv3过往成果展

不过,打败Mask-RCNN已经是值得庆祝的成就了。
One More Thing
NAS既然如此高能,应该已经搜索过很多东西了吧?
谷歌大脑的另一位成员David Ha列出了7种:

  1. 基于CNN的图像分类器,2) RNN,3) 激活函数,4) SGD优化器,5) 数据扩增,6) Transformer,7) 目标检测。

并发射了直击灵魂的提问:下一个被搜的会是什么?
他的同事摘得了最佳答案:NAS啊。

论文传送门:https://arxiv.org/pdf/1904.07392.pdf(全英文)
转载于虎嗅网,原文来自微信公众号:量子位(ID:QbitAI),作者:方栗子

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 218,546评论 6 507
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,224评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,911评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,737评论 1 294
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,753评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,598评论 1 305
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,338评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,249评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,696评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,888评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,013评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,731评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,348评论 3 330
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,929评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,048评论 1 270
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,203评论 3 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,960评论 2 355

推荐阅读更多精彩内容