There are two sorted arrays nums1 and nums2 of size m and n respectively.
Find the median of the two sorted arrays. The overall run time complexity should be O(log (m+n)).
Example 1:
nums1 = [1, 3]
nums2 = [2]
The median is 2.0
Example 2:
nums1 = [1, 2]
nums2 = [3, 4]
The median is (2 + 3)/2 = 2.5
C++ Version:
class Solution {
public:
double findMedianSortedArrays(vector<int>& nums1, vector<int>& nums2) {
int m, n;
double result;
m = nums1.size();
n = nums2.size();
vector<int> nums3;
int p1 = 0, p2 = 0;
if( (m + n) % 2){ //总共有奇数个,取第(m+n+1)/2个
int k = (m+n+1)/2;
while(p1<m&&p2<n&&k){
nums3.push_back(nums1[p1]<nums2[p2]?nums1[p1++]:nums2[p2++]);
k--;
}
while(p1<m&&k){
nums3.push_back(nums1[p1++]);
k--;
}
while(p2<n&&k){
nums3.push_back(nums2[p2++]);
k--;
}
result = nums3[ (m + n -1) / 2];
}else{ //偶数个,取第(m+n)/2个和第(m+n+2)/2的平均值
int k = (m+n+2)/2;
while(p1<m&&p2<n&&k){
nums3.push_back(nums1[p1]<nums2[p2]?nums1[p1++]:nums2[p2++]);
cout << k << endl;
k--;
}
while(p1<m&&k){
nums3.push_back(nums1[p1++]);
cout << k << endl;
// cout << nums1[p1++];
k--;
}
while(p2<n&&k){
nums3.push_back(nums2[p2++]);
cout << k << endl;
// cout << nums2[p2++];
k--;
}
// cout << m+n << (double)nums3[ (m+n) / 2] << " " << (double)nums3[ (m+n) / 2];
result = ( (double)nums3[ (m+n-2) / 2] + (double)nums3[(m+n) / 2] ) / 2;
}
return result;
}
};