Python的内存管理机制深度解析

什么是内存管理器(what)
Python作为一个高层次的结合了解释性、编译性、互动性和面向对象的脚本语言,与大多数编程语言不同,Python中的变量无需事先申明,变量无需指定类型,程序员无需关心内存管理,Python解释器给你自动回收。开发人员不用过多的关心内存管理机制,这一切全部由python内存管理器承担了复杂的内存管理工作。
内存不外乎创建和销毁两部分,本文将围绕python的内存池和垃圾回收两部分进行分析。
Python内存池
为什么要引入内存池(why)
当创建大量消耗小内存的对象时,频繁调用new/malloc会导致大量的内存碎片,致使效率降低。内存池的作用就是预先在内存中申请一定数量的,大小相等的内存块留作备用,当有新的内存需求时,就先从内存池中分配内存给这个需求,不够之后再申请新的内存。这样做最显著的优势就是能够减少内存碎片,提升效率。
python中的内存管理机制为Pymalloc

内存池是如果工作的(how)
首先,我们看一张CPython(python解释器)的内存架构图:

  • python的对象管理主要位于Level+1~Level+3层
  • Level+3层:对于python内置的对象(比如int,dict等)都有独立的私有内存池,对象之间的内存池不共享,即int释放的内存,不会被分配给float使用
  • Level+2层:当申请的内存大小小于256KB时,内存分配主要由 Python 对象分配器(Python’s object allocator)实施
  • Level+1层:当申请的内存大小大于256KB时,由Python原生的内存分配器进行分配,本质上是调用C标准库中的malloc/realloc等函数

关于释放内存方面,当一个对象的引用计数变为0时,Python就会调用它的析构函数。调用析构函数并不意味着最终一定会调用free来释放内存空间,如果真是这样的话,那频繁地申请、释放内存空间会使Python的执行效率大打折扣。因此在析构时也采用了内存池机制,从内存池申请到的内存会被归还到内存池中,以避免频繁地申请和释放动作。

垃圾回收机制
Python的垃圾回收机制采用引用计数机制为主,标记-清除和分代回收机制为辅的策略。其中,标记-清除机制用来解决计数引用带来的循环引用而无法释放内存的问题,分代回收机制是为提升垃圾回收的效率。
引用计数
Python通过引用计数来保存内存中的变量追踪,即记录该对象被其他使用的对象引用的次数。
Python中有个内部跟踪变量叫做引用计数器,每个变量有多少个引用,简称引用计数。当某个对象的引用计数为0时,就列入了垃圾回收队列。

>>> a=[1,2]
>>> import sys
>>> sys.getrefcount(a)  ## 获取对象a的引用次数
2
>>> b=a
>>> sys.getrefcount(a)
3
>>> del b  ## 删除b的引用
>>> sys.getrefcount(a)
2
>>> c=list()
>>> c.append(a) ## 加入到容器中
>>> sys.getrefcount(a)
3
>>> del c  ## 删除容器,引用-1
>>> sys.getrefcount(a)
2
>>> b=a
>>> sys.getrefcount(a)
3
>>> a=[3,4]  ## 重新赋值
>>> sys.getrefcount(a)
2

注意:当把a作为参数传递给getrefcount时,会产生一个临时的引用,因此得出来的结果比真实情况+1

  • 引用计数增加的情况:
  1. 一个对象被分配给一个新的名字(例如:a=[1,2])
  2. 将其放入一个容器中(如列表、元组或字典)(例如:c.append(a))
  • 引用计数减少的情况:
  1. 使用del语句对对象别名显式的销毁(例如:del b)
  2. 对象所在的容器被销毁或从容器中删除对象(例如:del c )
  3. 引用超出作用域或被重新赋值(例如:a=[3,4])

引用计数能够解决大多数垃圾回收的问题,但是遇到两个对象相互引用的情况,del语句可以减少引用次数,但是引用计数不会归0,对象也就不会被销毁,从而造成了内存泄漏问题。针对该情况,Python引入了标记-清除机制
标记-清除
标记-清除用来解决引用计数机制产生的循环引用,进而导致内存泄漏的问题 。 循环引用只有在容器对象才会产生,比如字典,元组,列表等。
顾名思义,该机制在进行垃圾回收时分成了两步,分别是:

  • 标记阶段,遍历所有的对象,如果是可达的(reachable),也就是还有对象引用它,那么就标记该对象为可达
  • 清除阶段,再次遍历对象,如果发现某个对象没有标记为可达(即为Unreachable),则就将其回收
>>> a=[1,2]
>>> b=[3,4]
>>> sys.getrefcount(a)
2
>>> sys.getrefcount(b)
2
>>> a.append(b)
>>> sys.getrefcount(b)
3
>>> b.append(a)
>>> sys.getrefcount(a)
3
>>> del a
>>> del b
  • a引用b,b引用a,此时两个对象各自被引用了2次(去除getrefcout()的临时引用)

执行del之后,对象a,b的引用次数都-1,此时各自的引用计数器都为1,陷入循环引用

标记:找到其中的一端a,因为它有一个对b的引用,则将b的引用计数-1

标记:再沿着引用到b,b有一个a的引用,将a的引用计数-1,此时对象a和b的引用次数全部为0,被标记为不可达(Unreachable)

  • 清除: 被标记为不可达的对象就是真正需要被释放的对象

上面描述的垃圾回收的阶段,会暂停整个应用程序,等待标记清除结束后才会恢复应用程序的运行。为了减少应用程序暂停的时间,Python 通过“分代回收”(Generational Collection)以空间换时间的方法提高垃圾回收效率。

分代回收
分代回收是基于这样的一个统计事实,对于程序,存在一定比例的内存块的生存周期比较短;而剩下的内存块,生存周期会比较长,甚至会从程序开始一直持续到程序结束。生存期较短对象的比例通常在 80%~90%之间。 因此,简单地认为:对象存在时间越长,越可能不是垃圾,应该越少去收集。这样在执行标记-清除算法时可以有效减小遍历的对象数,从而提高垃圾回收的速度,是一种以空间换时间的方法策略。
Python将所有的对象分为年轻代(第0代)、中年代(第1代)、老年代(第2代)三代。所有的新建对象默认是 第0代对象。当在第0代的gc扫描中存活下来的对象将被移至第1代,在第1代的gc扫描中存活下来的对象将被移至第2代。
gc扫描次数(第0代>第1代>第2代)
当某一代中被分配的对象与被释放的对象之差达到某一阈值时,就会触发当前一代的gc扫描。当某一代被扫描时,比它年轻的一代也会被扫描,因此,第2代的gc扫描发生时,第0,1代的gc扫描也会发生,即为全代扫描。

>>> import gc 
>>> gc.get_threshold() ## 分代回收机制的参数阈值设置
(700, 10, 10)
  • 700=新分配的对象数量-释放的对象数量,第0代gc扫描被触发
  • 第一个10:第0代gc扫描发生10次,则第1代的gc扫描被触发
  • 第二个10:第1代的gc扫描发生10次,则第2代的gc扫描被触发

思考
在标记-清除中,如果对象c也引用a,执行del操作后,会发生什么?
对象a,b,c的引用关系如下图所示:

>>> a=[1,2]
>>> b=[3,4]
>>> c=a
>>> a.append(b)
>>> b.append(a)
  • ref_count表示引用计数
  • 对象a,b,c全部为reachable

执行del之后,引用关系如下图所示:

>>> del a
>>> del b
  • a,b,c的ref_count减1

执行gc扫描

  • 标记: a引用b,将b的ref_count减1到0,b引用a,将a的ref_count减1到1,将b放在unreachable下

再循环:因为a是可达的,所以会递归地将从a节点出发可以达到的所有节点标记为reachable下,即为:

  • 清除:unreachable下没有可清除的对象,因此a,b,c对象不会被清除
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,968评论 6 482
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,601评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 153,220评论 0 344
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,416评论 1 279
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,425评论 5 374
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,144评论 1 285
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,432评论 3 401
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,088评论 0 261
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,586评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,028评论 2 325
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,137评论 1 334
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,783评论 4 324
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,343评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,333评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,559评论 1 262
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,595评论 2 355
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,901评论 2 345

推荐阅读更多精彩内容