Flume基本操作 #flume#

一、监听端口将结果输出到console

  1. 编写配置文件job_flume_netcat.conf
# Name the components on this agent
a1.sources = r1
a1.sinks = k1
a1.channels = c1

# Describe/configure the source
a1.sources.r1.type = netcat
a1.sources.r1.bind = localhost
a1.sources.r1.port = 44444

# Describe the sink
a1.sinks.k1.type = logger

# Use a channel which buffers events in memory
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100

# Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1
  1. 启动flume进程
flume-ng agent --conf /home/hadoop/app/apache-flume-1.7.0/conf/ --name a1 --conf-file /home/hadoop/app/apache-flume-1.7.0/job/job_flume_netcat.conf -Dflume.root.logger==INFO,console
  1. 查看指定端口是否被flume监听
sudo netstat -tunlp | grep 44444
  1. 用telnet发送数据
telnet localhost 44444


二、动态读取日志文件并写入到hdfs

  1. 编写配置文件job_flume_2hdfs.conf
# Name the components on this agent 
a2.sources = r2
a2.sinks = k2
a2.channels = c2
# Describe/configure the source
a2.sources.r2.type = exec
a2.sources.r2.command = tail -F /home/hadoop/app/hive-1.2.2/logs/hive.log
a2.sources.r2.shell = /bin/bash -c

# Describe the sink
a2.sinks.k2.type = hdfs
a2.sinks.k2.hdfs.path = hdfs://hadoop01:9000/flume/hive-logs/%Y%m%d/%H

#上传文件的前缀
a2.sinks.k2.hdfs.filePrefix = logs-

#是否按照时间滚动文件夹
a2.sinks.k2.hdfs.round = true

#多少时间单位创建一个新的文件夹
a2.sinks.k2.hdfs.roundValue = 1

#重新定义时间单位 
a2.sinks.k2.hdfs.roundUnit = hour

#是否使用本地时间戳 
a2.sinks.k2.hdfs.useLocalTimeStamp = true

#积攒多少个Event才flush到HDFS 一次
a2.sinks.k2.hdfs.batchSize = 1000

#设置文件类型,可支持压缩
a2.sinks.k2.hdfs.fileType = DataStream

#多久生成一个新的文件
a2.sinks.k2.hdfs.rollInterval = 600

#设置每个文件的滚动大小 
a2.sinks.k2.hdfs.rollSize = 134217700

#文件的滚动与Event数量无关 
a2.sinks.k2.hdfs.rollCount = 0

#最小冗余数
a2.sinks.k2.hdfs.minBlockReplicas = 1

# Use a channel which buffers events in memory 
a2.channels.c2.type = memory
a2.channels.c2.capacity = 1000
a2.channels.c2.transactionCapacity = 100

# Bind the source and sink to the channel 
a2.sources.r2.channels = c2 
a2.sinks.k2.channel = c2
  1. 启动flume进程
flume-ng agent --conf /home/hadoop/app/apache-flume-1.7.0/conf/ --name a2 --conf-file /home/hadoop/app/apache-flume-1.7.0/job/job_flume_2hdfs.conf


三、实时读取目录文件到HDFS

  1. 编写配置文件flume-dir.conf
a3.sources = r3
a3.sinks = k3
a3.channels = c3

# Describe/configure the source
a3.sources.r3.type = spooldir
a3.sources.r3.spoolDir = /home/hadoop/app/apache-flume-1.7.0/upload
a3.sources.r3.fileSuffix = .COMPLETED
a3.sources.r3.fileHeader = true

#忽略所有以.tmp 结尾的文件,不上传
a3.sources.r3.ignorePattern = ([^ ]*\.tmp)

# Describe the sink
a3.sinks.k3.type = hdfs
a3.sinks.k3.hdfs.path = hdfs://hadoop01:9000/flume/upload/%Y%m%d/%H

#上传文件的前缀
a3.sinks.k3.hdfs.filePrefix = upload-

#是否按照时间滚动文件夹
a3.sinks.k3.hdfs.round = true

#多少时间单位创建一个新的文件夹
a3.sinks.k3.hdfs.roundValue = 1

#重新定义时间单位
a3.sinks.k3.hdfs.roundUnit = hour

#是否使用本地时间戳 
a3.sinks.k3.hdfs.useLocalTimeStamp = true

#积攒多少个Event才flush到HDFS一次
a3.sinks.k3.hdfs.batchSize = 100

#设置文件类型,可支持压缩
a3.sinks.k3.hdfs.fileType = DataStream

#多久生成一个新的文件
a3.sinks.k3.hdfs.rollInterval = 600

#设置每个文件的滚动大小大概是128M
a3.sinks.k3.hdfs.rollSize = 134217700

#文件的滚动与Event数量无关
a3.sinks.k3.hdfs.rollCount = 0

#最小冗余数
a3.sinks.k3.hdfs.minBlockReplicas = 1

# Use a channel which buffers events in memory 
a3.channels.c3.type = memory
a3.channels.c3.capacity = 1000
a3.channels.c3.transactionCapacity = 100

# Bind the source and sink to the channel
a3.sources.r3.channels = c3
a3.sinks.k3.channel = c3
  1. 启动flume进程
flume-ng agent --conf /home/hadoop/app/apache-flume-1.7.0/conf/ --name a3 --conf-file /home/hadoop/app/apache-flume-1.7.0/job/flume-dir.conf


四、Flume与Flume之间数据传递:单Flume多Channel、 Sink

  1. 编写配置文件

    • flume-1.conf
    # Name the components on this agent
    a1.sources = r1
    a1.sinks = k1 k2
    a1.channels = c1 c2
    
    # 将数据流复制给多个 channel 
    a1.sources.r1.selector.type = replicating
    
    # Describe/configure the source
    a1.sources.r1.type = exec
    a1.sources.r1.command = tail -F /home/hadoop/app/hive-1.2.2/logs/hive.log
    a1.sources.r1.shell = /bin/bash -c
    
    # Describe the sink 
    a1.sinks.k1.type = avro
    a1.sinks.k1.hostname = hadoop01
    a1.sinks.k1.port = 4141
    a1.sinks.k2.type = avro
    a1.sinks.k2.hostname = hadoop01
    a1.sinks.k2.port = 4142
    
    # Describe the channel 
    a1.channels.c1.type = memory
    a1.channels.c1.capacity = 1000
    a1.channels.c1.transactionCapacity = 100
    
    a1.channels.c2.type = memory
    a1.channels.c2.capacity = 1000
    a1.channels.c2.transactionCapacity = 100
    
    # Bind the source and sink to the channel
    a1.sources.r1.channels = c1 c2
    a1.sinks.k1.channel = c1
    a1.sinks.k2.channel = c2
    
    • flume-2.conf
    # Name the components on this agent
    a2.sources = r1
    a2.sinks = k1
    a2.channels = c1
    
    # Describe/configure the source
    a2.sources.r1.type = avro
    a2.sources.r1.bind = hadoop01
    a2.sources.r1.port = 4141
    
    # Describe the sink
    a2.sinks.k1.type = hdfs
    a2.sinks.k1.hdfs.path = hdfs://hadoop01:9000/flume2/%Y%m%d/%H
    #上传文件的前缀
    a2.sinks.k1.hdfs.filePrefix = flume2-
    
    #是否按照时间滚动文件夹
    a2.sinks.k1.hdfs.round = true
    
    #多少时间单位创建一个新的文件夹
    a2.sinks.k1.hdfs.roundValue = 1
    
    #重新定义时间单位
    a2.sinks.k1.hdfs.roundUnit = hour
    
    #是否使用本地时间戳
    a2.sinks.k1.hdfs.useLocalTimeStamp = true
    
    #积攒多少个Event才flush到HDFS 一次
    a2.sinks.k1.hdfs.batchSize = 100
    
    #设置文件类型,可支持压缩
    a2.sinks.k1.hdfs.fileType = DataStream
    
    #多久生成一个新的文件
    a2.sinks.k1.hdfs.rollInterval = 600
    
    #设置每个文件的滚动大小大概是128M
    a2.sinks.k1.hdfs.rollSize = 134217700
    
    #文件的滚动与Event数量无关
    a2.sinks.k1.hdfs.rollCount = 0
    
    #最小冗余数 
    a2.sinks.k1.hdfs.minBlockReplicas = 1
    
    # Describe the channel
    a2.channels.c1.type = memory
    a2.channels.c1.capacity = 1000
    a2.channels.c1.transactionCapacity = 100
    
    # Bind the source and sink to the channel
    a2.sources.r1.channels = c1
    a2.sinks.k1.channel = c1
    
    • flume-3.conf
    # Name the components on this agent
    a3.sources = r1
    a3.sinks = k1
    a3.channels = c1
    
    # Describe/configure the source 
    a3.sources.r1.type = avro
    a3.sources.r1.bind = hadoop01
    a3.sources.r1.port = 4142
    
    # Describe the sink 文件夹必须存在
    a3.sinks.k1.type = file_roll
    a3.sinks.k1.sink.directory = /home/hadoop/flume2
    
    # Describe the channel 
    a3.channels.c1.type = memory
    a3.channels.c1.capacity = 1000
    a3.channels.c1.transactionCapacity = 100
    
    # Bind the source and sink to the channel
    a3.sources.r1.channels = c1
    a3.sinks.k1.channel = c1
    
  2. 启动flume进程

flume-ng agent --conf /home/hadoop/app/apache-flume-1.7.0/conf/ --name a1 --conf-file /home/hadoop/app/apache-flume-1.7.0/job/flume-1.conf

flume-ng agent --conf /home/hadoop/app/apache-flume-1.7.0/conf/ --name a2 --conf-file /home/hadoop/app/apache-flume-1.7.0/job/flume-2.conf

flume-ng agent --conf /home/hadoop/app/apache-flume-1.7.0/conf/ --name a3 --conf-file /home/hadoop/app/apache-flume-1.7.0/job/flume-3.conf


五、Flume与Flume之间数据传递,多Flume汇总数据到单Flume

  1. 编写配置文件

    • flume-a.conf
    # Name the components on this agent 
    a1.sources = r1
    a1.sinks = k1 
    a1.channels = c1
    
    # Describe/configure the source
    a1.sources.r1.type = exec
    a1.sources.r1.command = tail -F /home/hadoop/app/hive-1.2.2/logs/hive.log
    a1.sources.r1.shell = /bin/bash -c
    
    # Describe the sink
    a1.sinks.k1.type = avro
    a1.sinks.k1.hostname = hadoop01
    a1.sinks.k1.port = 4141
    
    # Describe the channel
    a1.channels.c1.type = memory
    a1.channels.c1.capacity = 1000
    a1.channels.c1.transactionCapacity = 100
    
    # Bind the source and sink to the channel
    a1.sources.r1.channels = c1
    a1.sinks.k1.channel = c1
    
    • flume-b.conf
    # Name the components on this agent
    a2.sources = r1
    a2.sinks = k1
    a2.channels = c1
    
    # Describe/configure the source
    a2.sources.r1.type = netcat
    a2.sources.r1.bind = hadoop01
    a2.sources.r1.port = 44444
    
    # Describe the sink
    a2.sinks.k1.type = avro
    a2.sinks.k1.hostname = hadoop01
    a2.sinks.k1.port = 4141
    
    # Use a channel which buffers events in memory
    a2.channels.c1.type = memory
    a2.channels.c1.capacity = 1000
    a2.channels.c1.transactionCapacity = 100
    
    # Bind the source and sink to the channel
    a2.sources.r1.channels = c1
    a2.sinks.k1.channel = c1
    
    • flume-c.conf
    # Name the components on this agent 
    a3.sources = r1
    a3.sinks = k1
    a3.channels = c1
    
    # Describe/configure the source
    a3.sources.r1.type = avro
    a3.sources.r1.bind = hadoop01
    a3.sources.r1.port = 4141
    
    # Describe the sink
    a3.sinks.k1.type = hdfs
    a3.sinks.k1.hdfs.path = hdfs://hadoop01:9000/flume3/%Y%m%d/%H
    
    #上传文件的前缀
    a3.sinks.k1.hdfs.filePrefix = flume3-
    
    #是否按照时间滚动文件夹
    a3.sinks.k1.hdfs.round = true
    
    #多少时间单位创建一个新的文件夹
    a3.sinks.k1.hdfs.roundValue = 1
    
    #重新定义时间单位
    a3.sinks.k1.hdfs.roundUnit = hour
    
    #是否使用本地时间戳
    a3.sinks.k1.hdfs.useLocalTimeStamp = true
    
    #积攒多少个 Event 才 flush 到 HDFS 一次
    a3.sinks.k1.hdfs.batchSize = 100
    
    #设置文件类型,可支持压缩
    a3.sinks.k1.hdfs.fileType = DataStream
    
    #多久生成一个新的文件
    a3.sinks.k1.hdfs.rollInterval = 600
    
    #设置每个文件的滚动大小大概是 128M
    a3.sinks.k1.hdfs.rollSize = 134217700
    
    #文件的滚动与 Event 数量无关
    a3.sinks.k1.hdfs.rollCount = 0
    
    #最小冗余数
    a3.sinks.k1.hdfs.minBlockReplicas = 1
    
    # Describe the channel
    a3.channels.c1.type = memory
    a3.channels.c1.capacity = 1000
    a3.channels.c1.transactionCapacity = 100
    
    # Bind the source and sink to the channel
    a3.sources.r1.channels = c1
    a3.sinks.k1.channel = c1
    
  2. 启动flume进程

flume-ng agent --conf /home/hadoop/app/apache-flume-1.7.0/conf/ --name a1 --conf-file /home/hadoop/app/apache-flume-1.7.0/job/flume-a.conf

flume-ng agent --conf /home/hadoop/app/apache-flume-1.7.0/conf/ --name a2 --conf-file /home/hadoop/app/apache-flume-1.7.0/job/flume-b.conf

flume-ng agent --conf /home/hadoop/app/apache-flume-1.7.0/conf/ --name a3 --conf-file /home/hadoop/app/apache-flume-1.7.0/job/flume-c.conf
  1. 用telnet发送数据
telnet localhost 44444
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,245评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,749评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,960评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,575评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,668评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,670评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,664评论 3 415
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,422评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,864评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,178评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,340评论 1 344
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,015评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,646评论 3 323
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,265评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,494评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,261评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,206评论 2 352