树莓派3 + HC-SR04超声波测距模块

超声波测距的原理很简单,高中物理题不是做过很多次了么 :D

超声波测距原理


可以看到,知道时间间隔就能得到距离 L。

那么 HC-SR04 是怎么测距的呢?又怎么使用树莓派控制它? 


HC-SR04 介绍

HC-SR04 模块可以测量 3cm - 4m 的距离,精确度可以达到 3mm。这个模块包括 超声波发射器、超声波接收器和控制电路三部分。有 4 个引脚。


HC-SR04 实物图


HC-SR04参数表

接线方式

4 个引脚由 2 个电源引脚(Vcc 、GND)和 2 个控制引脚(Trig、Echo)组成。

Vcc 和 Gnd 接 5v DC 电源,但不推荐用独立电源给它供电,应使用树莓派或单片机的 GPIO 口输出 5v 和 Gnd 给它供电。不然会影响这个模块的运行。

Trig 引脚用来接收来自树莓派的控制信号。接任意 GPIO 口。

Echo 引脚用来发送测距结果给树莓派。接任意 GPIO 口。

(注意 Echo 返回的是 5v信号,而树莓派的 GPIO 接收超过 3.3v 的信号可能会被烧毁,因此需要加一个分压电路)


HC-SR04 的测距过程


1. 树莓派向 Trig 脚发送一个持续 10us 的脉冲信号。

2. HC-SR04 接收到树莓派发送的脉冲信号,开始发送超声波 (start sending ultrasoun),并把 Echo置为高电平。    然后准备接收返回的超声波。

3. 当 HC-SR04 接收到返回的超声波 (receive returned ultrasound) 时,把 Echo 置为低电平。


从上述过程可以看出, Echo 高电平持续的时间就是超声波从发射到返回所经过的时间间隔 ~

请对照下图,



电路图与 python 程序


电路图

接线跟前文所说的一样。 GPIO 2 脚接 Trig , GPIO 3 脚接 Echo 。树莓派的 +5v 和 Gnd 与 HC-SR04 的 Vcc 和 Gnd 相连。还有一个分压电路,一端接 Echo ,另一端接 Gnd。

 1k 和 2k 电阻组成了一个分压电路,使 GPIO 3 脚的电压降到了 3.3v 左右。


python 程序

初始化相关引脚:


2 脚连 Trig ,设为输出模式; 3 脚连 Echo,设为输入模式。

然后向 Trig 引脚输入 10us 的脉冲:


time.sleep()  接收的参数单位为 s ,于是把10 us 转换为 0.00001 s 。

接收到这个脉冲后,HC-SR04 发射出超声波,同时把 Echo 置为高电平。在发射之前,Echo 一直为低电平。

据此编写程序,记录超声波发射时的时间。

然后记录超声波返回时的时间。


这样就获得了我们需要的数据 pulse_start 和 pulse_end ,可以算出距离了~

测得距离(单位:m)  =  (pulse_end - pulse_start) * 声波速度 / 2 

声波速度取 343m/s 。

然后再把测得的距离转换为 cm。

测得距离(单位:cm) = (pulse_end - pulse_start) * 声波速度 / 2 * 100 

                             =  (pulse_end - pulse_start) * 17150 



上面的代码片段都是截图,完整的文本程序地址 : github.com/mozjiang/my_raspi/blob/master/ultrasonic_test.py

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,904评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,581评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,527评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,463评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,546评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,572评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,582评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,330评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,776评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,087评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,257评论 1 344
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,923评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,571评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,192评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,436评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,145评论 2 366
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,127评论 2 352

推荐阅读更多精彩内容