RNN入门:多层LSTM网络(五)

这里介绍如何利用TensorFlow(r1.1)的dynamic_rnn API对上一篇的代码进行简化。
虽然名称上含有动态的意思,实际上却只是把输入从元组变成了整体,似乎没有真正实现动态。

建模

调用tf.nn.dynamic_rnn直接处理输入,而不必像上一篇一样,通过一个循环逐次对batch中的每一行进行处理。

states_series, current_state = tf.nn.dynamic_rnn(cell, tf.expand_dims(batchX_placeholder, -1), initial_state=rnn_tuple_state)

全部代码

from __future__ import print_function, division
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt

num_epochs = 100
total_series_length = 50000
truncated_backprop_length = 15
state_size = 4
num_classes = 2
echo_step = 3
batch_size = 5
num_batches = total_series_length//batch_size//truncated_backprop_length
num_layers = 3

def generateData():
    x = np.array(np.random.choice(2, total_series_length, p=[0.5, 0.5]))
    y = np.roll(x, echo_step)
    y[0:echo_step] = 0

    x = x.reshape((batch_size, -1))  # The first index changing slowest, subseries as rows
    y = y.reshape((batch_size, -1))

    return (x, y)

batchX_placeholder = tf.placeholder(tf.float32, [batch_size, truncated_backprop_length])
batchY_placeholder = tf.placeholder(tf.int32, [batch_size, truncated_backprop_length])

init_state = tf.placeholder(tf.float32, [num_layers, 2, batch_size, state_size])
state_per_layer_list = tf.stack(init_state, axis=0)
rnn_tuple_state = tuple(
    [tf.contrib.rnn.LSTMStateTuple(state_per_layer_list[idx][0], state_per_layer_list[idx][1])
     for idx in range(num_layers)]
)

W2 = tf.Variable(np.random.rand(state_size, num_classes),dtype=tf.float32)
b2 = tf.Variable(np.zeros((1,num_classes)), dtype=tf.float32)

# Forward passes
cells = []
for n in range(num_layers):
    cells.append(tf.contrib.rnn.BasicLSTMCell(state_size, state_is_tuple=True))
cell = tf.contrib.rnn.MultiRNNCell(cells, state_is_tuple=True)

states_series, current_state = tf.nn.dynamic_rnn(cell, tf.expand_dims(batchX_placeholder, -1), initial_state=rnn_tuple_state)
states_series = tf.reshape(states_series, [-1, state_size])

logits = tf.matmul(states_series, W2) + b2 #Broadcasted addition
labels = tf.reshape(batchY_placeholder, [-1])

logits_series = tf.unstack(tf.reshape(logits, [batch_size, truncated_backprop_length, num_classes]), axis=1)
predictions_series = [tf.nn.softmax(logit) for logit in logits_series]


losses = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=labels)
total_loss = tf.reduce_mean(losses)

train_step = tf.train.AdagradOptimizer(0.3).minimize(total_loss)

def plot(loss_list, predictions_series, batchX, batchY):
    plt.subplot(2, 3, 1)
    plt.cla()
    plt.plot(loss_list)

    for batch_series_idx in range(5):
        one_hot_output_series = np.array(predictions_series)[:, batch_series_idx, :]
        single_output_series = np.array([(1 if out[0] < 0.5 else 0) for out in one_hot_output_series])

        plt.subplot(2, 3, batch_series_idx + 2)
        plt.cla()
        plt.axis([0, truncated_backprop_length, 0, 2])
        left_offset = range(truncated_backprop_length)
        plt.bar(left_offset, batchX[batch_series_idx, :], width=1, color="blue")
        plt.bar(left_offset, batchY[batch_series_idx, :] * 0.5, width=1, color="red")
        plt.bar(left_offset, single_output_series * 0.3, width=1, color="green")

    plt.draw()
    plt.pause(0.0001)


with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    plt.ion()
    plt.figure()
    plt.show()
    loss_list = []

    for epoch_idx in range(num_epochs):
        x,y = generateData()

        _current_state = np.zeros((num_layers, 2, batch_size, state_size))

        print("New data, epoch", epoch_idx)

        for batch_idx in range(num_batches):
            start_idx = batch_idx * truncated_backprop_length
            end_idx = start_idx + truncated_backprop_length

            batchX = x[:,start_idx:end_idx]
            batchY = y[:,start_idx:end_idx]

            _total_loss, _train_step, _current_state, _predictions_series = sess.run(
                [total_loss, train_step, current_state, predictions_series],
                feed_dict={
                    batchX_placeholder: batchX,
                    batchY_placeholder: batchY,
                    init_state: _current_state
                })


            loss_list.append(_total_loss)

            if batch_idx%100 == 0:
                print("Step",batch_idx, "Batch loss", _total_loss)
                plot(loss_list, _predictions_series, batchX, batchY)

plt.ioff()
plt.show()

参考文献:

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 211,423评论 6 491
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,147评论 2 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,019评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,443评论 1 283
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,535评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,798评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,941评论 3 407
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,704评论 0 266
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,152评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,494评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,629评论 1 340
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,295评论 4 329
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,901评论 3 313
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,742评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,978评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,333评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,499评论 2 348

推荐阅读更多精彩内容

  • 仔细想一想,她还是一只小狗。2014年我去布丁动画工作的时候,她来到我家。听到这件事我心里“哇”了一下,这么巧,这...
    钱满阅读 486评论 1 4
  • 文/A 幸运点 斜月照山青,旷谷空灵。 风休雪驻叹息盈? 鸿爪留痕深浅径,林海声平。 几度梦寒星,瑟瑟前行。 天涯...
    A幸运点阅读 392评论 6 12
  • 旅行的时候总有很多冲动的时刻,无非是吃吃吃买买买咔咔咔! 哪个敢说自己出去玩的时候,一张照片都不拍的! 每到逢年过...
    旅行就是不跟团阅读 266评论 0 0
  • 原创散文/李方明 其实石头是通灵性的。在我老家就有一块石头立在龙溪边,色泽乳白,凸出来的腹部,看上去仿如一个身怀六...
    静艾阅读 587评论 0 0