nio = non-blocking io 非阻塞io
1. nio三大组件
1.1 Channel & Buffer
Channel有一点类似于stream,它就是读写数据的双向通道(我们以前接触到java中读取数据和写入数据分别是InputStream和OutputStream他们都是单向的),可以冲 channel 将数据读入 buffer,也可以将 buffer 的数据写入channel,而之前的 stream 要么是输入,要么是输出,channel 比 stream更为底层。
常见的Channel有
- FileChannel : 读取和写入文件时使用的
- DatagramChannel : UDP时使用的
- SocketChannel : TCP时使用的
- ServerSocketChannel : TCP时作为服务器使用的
buffer 则用来缓冲读写数据,常见的buffer有
- ByteBuffer : 我们最常用的就是这个,其他的不怎么用, 有以下三种实现
- MappedByteBUffer
- DirectByteBuffer
- HeapByteBuffer
- ShortBuffer
- IntBuffer
- LongBuffer
- FloatBuffer
- DoubleBuffer
- CharBuffer
1.2 Selector
selector 单从字面意思不好理解,需要结合服务器的设计演化帮助理解它的用途
多线程版设计
我们有一个服务,在多线程版设计下,如果有一个客户端通过socket链接进来,那么我们就要创建一条线程去处理客户的请求。
缺点:
- 占用内存高
- 线程的上下文切换成本高
- 只适合连接数少的场景
线程池版设计
这里们首先初始化一个线程池,这样的话线程就不会无限制的创建,也就避免了创建线程过多带来的问题
缺点:
- 阻塞模式下,一个线程仅能处理一个socket连接
- 仅适合短连接场景(如果一个socket需要长时间处理,那么当前线程就释放不出去了)
selector 版设计
selector 的作用就是配合一个线程来管理多个channel,获取这些channel发生的事件,这些channel工作在非阻塞模式下,不会让线程吊死在一个channel上,适合连接数特别多,但流量低的场景(low traffic)
调用selector的select()会阻塞直到channel发生了读写就绪事件,这些事件发生,select方法就会返回这些事件交给thread来处理。
就好比一个饭店有一个客服(selector),但是她不是一直守在客户(channel)面前,客户刚开始的时候只是看看菜单,这并不需要客服,当客户(channel)需要点一个黄焖鸡米饭时,他只要把这个需求告诉客服(selector),客户就会安排厨师(thread)去做,这样的话,厨师就一直有活干。
2.ByteBuffer
基本使用
package com.xfm.netty.c1;
import lombok.extern.slf4j.Slf4j;
import java.io.FileInputStream;
import java.io.IOException;
import java.nio.ByteBuffer;
import java.nio.channels.FileChannel;
@Slf4j
public class TestByteBuffer {
public static void main(String[] args) {
// 这边使用FileChannel
try (FileChannel channel = new FileInputStream("netty/data.txt").getChannel()) {
// 准备缓冲区
ByteBuffer buffer = ByteBuffer.allocate(10);
while (true) {
int read = channel.read(buffer);
log.info("读取到的字节:{}", read);
if (read == -1) {
break;
}
// 打印buffer内容
buffer.flip(); // 切换至读模式
while (buffer.hasRemaining()) { //是否有剩余未读数据
byte b = buffer.get(); // 一次读取一个字节
log.info("读取到的字符:{}", (char) b);
}
buffer.clear(); // 切换至写模式
}
} catch (IOException e) {
log.error("io异常", e);
}
}
}
2.1 ByteBuffer 正确使用姿势
- 向buffer写入数据,例如调用channe.read(buffer)
- 调用filp()切换至读模式
- 从buffer中读取数据,例如调用buffer.get()方法
- 调用clear或compact()切换至写模式
- 重复1~4
2.2 ByteBuffer 结构
想想为啥上面的代码从buffer读取数据时要切换成读模式,读完之后还要切换成写模式?
这与ByteBuffer 的结构有关!
ByteBuffer 有以下重要属性
- capacity:缓冲区的容量。通过构造函数赋予,一旦设置,无法更改
- position:下一个读写位置的索引(类似PC)。缓冲区的位置不能为负,并且不能大于limit
- limit:缓冲区的界限。位于limit 后的数据不可读写。缓冲区的限制不能为负,并且不能大于其容量
- mark:记录当前position的值。position被改变后,可以通过调用reset() 方法恢复到mark的位置。
以上四个属性必须满足以下要求
mark <= position <= limit <= capacity
一开始(刚创建buffer):
写模式下,position是写入位置,limit等于容量,下图表示了写入4个字节后的状态
filp动作发生后,position 切换至读模式,limit切换为读限制
读取4个字节后,状态
clear动作发生后,状态
compact方法,是把未读完的部分向前压缩,然后切换至写模式
2.3 buffer 核心方法
put()方法
- put()方法可以将一个数据放入到缓冲区中。
-
进行该操作后,postition的值会+1,指向下一个可以放入的位置。capacity = limit ,为缓冲区容量的值。
flip()方法
- flip()方法会将buffer切换成读模式
- 进行该操作后,position = 0 , limit 指向最后一个元素的下一个位置,capacity不变, mark=-1;
源码如下
public final Buffer flip() {
limit = position;
position = 0;
mark = -1;
return this;
}
get()方法
- get()方法会读取缓冲区中的一个值
- 进行该操作后,position会+1,如果超过了limit则会抛出异常
-
注意:get(i)方法获取索引 i 的内容,不会改变position的值
rewind()方法
- 该方法只能在读模式下使用
-
rewind()方法后,会恢复position、limit和capacity的值,变为进行get()前的值
clear()方法
- clear()方法会将缓冲区中的各个属性恢复为最初的状态,position = 0, capacity = limit
-
此时缓冲区的数据依然存在,处于“被遗忘”状态,下次进行写操作时会覆盖这些数据
mark()和reset()方法
- mark()方法会将postion的值保存到mark属性中
- reset()方法会将position的值改为mark中保存的值
compact()方法
此方法为ByteBuffer的方法,而不是Buffer的方法
-
compact会把未读完的数据向前压缩,然后切换到写模式
- 数据前移后,原位置的值并未清零,写时会覆盖之前的值
clear() VS compact()
clear只是对position、limit、mark进行重置,而compact在对position进行设置,以及limit、mark进行重置的同时,还涉及到数据在内存中拷贝(会调用arraycopy)。所以compact比clear更耗性能。但compact能保存你未读取的数据,将新数据追加到为读取的数据之后;而clear则不行,若你调用了clear,则未读取的数据就无法再读取到了
所以需要根据情况来判断使用哪种方法进行模式切换
ByteBuffer中的 allocate()方法和allocateDirect()方法
这两个方法都是初始化一个ByteBuffer,但是它们有什么区别呢?
先看代码
package com.xfm.netty.c1;
import java.nio.ByteBuffer;
public class TestByteBufferAllocate {
public static void main(String[] args) {
ByteBuffer allocate = ByteBuffer.allocate(10);
ByteBuffer byteBuffer = ByteBuffer.allocateDirect(10);
System.out.println(allocate); // java.nio.HeapByteBuffer[pos=0 lim=10 cap=10]
System.out.println(byteBuffer); // java.nio.DirectByteBuffer[pos=0 lim=10 cap=10]
}
}
可以看到,两个方法最终创建出来的对象是不一样的:
allocate --> java.nio.HeapByteBuffer(在堆中创建):java 堆内存,读写效率较低,收到GC的影响
allocateDirect --> java.nio.DirectByteBuffer (在直接内存中创建):直接内存,读写效率高(少一次拷贝),不会受GC影响,分配效率低
代码演示
调试工具类
import io.netty.util.internal.StringUtil;
import java.nio.ByteBuffer;
import static io.netty.util.internal.MathUtil.isOutOfBounds;
import static io.netty.util.internal.StringUtil.NEWLINE;
public class ByteBufferUtil {
private static final char[] BYTE2CHAR = new char[256];
private static final char[] HEXDUMP_TABLE = new char[256 * 4];
private static final String[] HEXPADDING = new String[16];
private static final String[] HEXDUMP_ROWPREFIXES = new String[65536 >>> 4];
private static final String[] BYTE2HEX = new String[256];
private static final String[] BYTEPADDING = new String[16];
static {
final char[] DIGITS = "0123456789abcdef".toCharArray();
for (int i = 0; i < 256; i++) {
HEXDUMP_TABLE[i << 1] = DIGITS[i >>> 4 & 0x0F];
HEXDUMP_TABLE[(i << 1) + 1] = DIGITS[i & 0x0F];
}
int i;
// Generate the lookup table for hex dump paddings
for (i = 0; i < HEXPADDING.length; i++) {
int padding = HEXPADDING.length - i;
StringBuilder buf = new StringBuilder(padding * 3);
for (int j = 0; j < padding; j++) {
buf.append(" ");
}
HEXPADDING[i] = buf.toString();
}
// Generate the lookup table for the start-offset header in each row (up to 64KiB).
for (i = 0; i < HEXDUMP_ROWPREFIXES.length; i++) {
StringBuilder buf = new StringBuilder(12);
buf.append(NEWLINE);
buf.append(Long.toHexString(i << 4 & 0xFFFFFFFFL | 0x100000000L));
buf.setCharAt(buf.length() - 9, '|');
buf.append('|');
HEXDUMP_ROWPREFIXES[i] = buf.toString();
}
// Generate the lookup table for byte-to-hex-dump conversion
for (i = 0; i < BYTE2HEX.length; i++) {
BYTE2HEX[i] = ' ' + StringUtil.byteToHexStringPadded(i);
}
// Generate the lookup table for byte dump paddings
for (i = 0; i < BYTEPADDING.length; i++) {
int padding = BYTEPADDING.length - i;
StringBuilder buf = new StringBuilder(padding);
for (int j = 0; j < padding; j++) {
buf.append(' ');
}
BYTEPADDING[i] = buf.toString();
}
// Generate the lookup table for byte-to-char conversion
for (i = 0; i < BYTE2CHAR.length; i++) {
if (i <= 0x1f || i >= 0x7f) {
BYTE2CHAR[i] = '.';
} else {
BYTE2CHAR[i] = (char) i;
}
}
}
/**
* 打印所有内容
* @param buffer
*/
public static void debugAll(ByteBuffer buffer) {
int oldlimit = buffer.limit();
buffer.limit(buffer.capacity());
StringBuilder origin = new StringBuilder(256);
appendPrettyHexDump(origin, buffer, 0, buffer.capacity());
System.out.println("+--------+-------------------- all ------------------------+----------------+");
System.out.printf("position: [%d], limit: [%d]\n", buffer.position(), oldlimit);
System.out.println(origin);
buffer.limit(oldlimit);
}
/**
* 打印可读取内容
* @param buffer
*/
public static void debugRead(ByteBuffer buffer) {
StringBuilder builder = new StringBuilder(256);
appendPrettyHexDump(builder, buffer, buffer.position(), buffer.limit() - buffer.position());
System.out.println("+--------+-------------------- read -----------------------+----------------+");
System.out.printf("position: [%d], limit: [%d]\n", buffer.position(), buffer.limit());
System.out.println(builder);
}
public static void main(String[] args) {
ByteBuffer buffer = ByteBuffer.allocate(10);
buffer.put(new byte[]{97, 98, 99, 100});
debugAll(buffer);
}
private static void appendPrettyHexDump(StringBuilder dump, ByteBuffer buf, int offset, int length) {
if (isOutOfBounds(offset, length, buf.capacity())) {
throw new IndexOutOfBoundsException(
"expected: " + "0 <= offset(" + offset + ") <= offset + length(" + length
+ ") <= " + "buf.capacity(" + buf.capacity() + ')');
}
if (length == 0) {
return;
}
dump.append(
" +-------------------------------------------------+" +
NEWLINE + " | 0 1 2 3 4 5 6 7 8 9 a b c d e f |" +
NEWLINE + "+--------+-------------------------------------------------+----------------+");
final int startIndex = offset;
final int fullRows = length >>> 4;
final int remainder = length & 0xF;
// Dump the rows which have 16 bytes.
for (int row = 0; row < fullRows; row++) {
int rowStartIndex = (row << 4) + startIndex;
// Per-row prefix.
appendHexDumpRowPrefix(dump, row, rowStartIndex);
// Hex dump
int rowEndIndex = rowStartIndex + 16;
for (int j = rowStartIndex; j < rowEndIndex; j++) {
dump.append(BYTE2HEX[getUnsignedByte(buf, j)]);
}
dump.append(" |");
// ASCII dump
for (int j = rowStartIndex; j < rowEndIndex; j++) {
dump.append(BYTE2CHAR[getUnsignedByte(buf, j)]);
}
dump.append('|');
}
// Dump the last row which has less than 16 bytes.
if (remainder != 0) {
int rowStartIndex = (fullRows << 4) + startIndex;
appendHexDumpRowPrefix(dump, fullRows, rowStartIndex);
// Hex dump
int rowEndIndex = rowStartIndex + remainder;
for (int j = rowStartIndex; j < rowEndIndex; j++) {
dump.append(BYTE2HEX[getUnsignedByte(buf, j)]);
}
dump.append(HEXPADDING[remainder]);
dump.append(" |");
// Ascii dump
for (int j = rowStartIndex; j < rowEndIndex; j++) {
dump.append(BYTE2CHAR[getUnsignedByte(buf, j)]);
}
dump.append(BYTEPADDING[remainder]);
dump.append('|');
}
dump.append(NEWLINE +
"+--------+-------------------------------------------------+----------------+");
}
private static void appendHexDumpRowPrefix(StringBuilder dump, int row, int rowStartIndex) {
if (row < HEXDUMP_ROWPREFIXES.length) {
dump.append(HEXDUMP_ROWPREFIXES[row]);
} else {
dump.append(NEWLINE);
dump.append(Long.toHexString(rowStartIndex & 0xFFFFFFFFL | 0x100000000L));
dump.setCharAt(dump.length() - 9, '|');
dump.append('|');
}
}
public static short getUnsignedByte(ByteBuffer buffer, int index) {
return (short) (buffer.get(index) & 0xFF);
}
}
测试代码
import com.xfm.netty.util.ByteBufferUtil;
import java.nio.ByteBuffer;
public class TestByteBuffer2 {
public static void main(String[] args) {
ByteBuffer buffer = ByteBuffer.allocate(10);
// 向buffer中写入一个字节
buffer.put((byte)0x61);
// 使用工具类查看
System.out.println("buffer.put((byte)0x61);");
ByteBufferUtil.debugAll(buffer);
// 继续向buffer写入多个字节
buffer.put(new byte[]{(byte)0x62, (byte)0x63, (byte)0x64, (byte)0x65,});
System.out.println("buffer.put(new byte[]{(byte)0x62, (byte)0x63, (byte)0x64, (byte)0x65,});");
ByteBufferUtil.debugAll(buffer);
// 获取数据
buffer.flip();
System.out.println("buffer.flip();");
ByteBufferUtil.debugAll(buffer);
System.out.println((char) buffer.get());
System.out.println((char) buffer.get());
System.out.println("连续调用两次get()");
ByteBufferUtil.debugAll(buffer);
// 使用compact切换模式
buffer.compact();
System.out.println("buffer.compact();");
ByteBufferUtil.debugAll(buffer);
// 再次写入
buffer.put((byte) 0x66);
buffer.put((byte) 0x67);
ByteBufferUtil.debugAll(buffer);
}
}
打印结果
// 向缓冲区写入了一个字节的数据,此时postition为1
+--------+-------------------- all ------------------------+----------------+
position: [1], limit: [10]
+-------------------------------------------------+
| 0 1 2 3 4 5 6 7 8 9 a b c d e f |
+--------+-------------------------------------------------+----------------+
|00000000| 61 00 00 00 00 00 00 00 00 00 |a......... |
+--------+-------------------------------------------------+----------------+
buffer.put(new byte[]{(byte)0x62, (byte)0x63, (byte)0x64, (byte)0x65,});
// 继续写入4个字节,可以看到position向前移动了四位,变成了5
+--------+-------------------- all ------------------------+----------------+
position: [5], limit: [10]
+-------------------------------------------------+
| 0 1 2 3 4 5 6 7 8 9 a b c d e f |
+--------+-------------------------------------------------+----------------+
|00000000| 61 62 63 64 65 00 00 00 00 00 |abcde..... |
+--------+-------------------------------------------------+----------------+
buffer.flip();
// 切成读模式,可以看到position变成了0,limit变成了position之前的偏移量5
+--------+-------------------- all ------------------------+----------------+
position: [0], limit: [5]
+-------------------------------------------------+
| 0 1 2 3 4 5 6 7 8 9 a b c d e f |
+--------+-------------------------------------------------+----------------+
|00000000| 61 62 63 64 65 00 00 00 00 00 |abcde..... |
+--------+-------------------------------------------------+----------------+
// 调用两次读取到的结果
a
b
连续调用两次get()
// 可以看到,调用两次之后,position向后偏移了两位
+--------+-------------------- all ------------------------+----------------+
position: [2], limit: [5]
+-------------------------------------------------+
| 0 1 2 3 4 5 6 7 8 9 a b c d e f |
+--------+-------------------------------------------------+----------------+
|00000000| 61 62 63 64 65 00 00 00 00 00 |abcde..... |
+--------+-------------------------------------------------+----------------+
buffer.compact();
// 调用压缩,意义看到a、b两已读字节被清除,cde往前偏移两位,而且偏移之前的字节不会清除,position成为了3
+--------+-------------------- all ------------------------+----------------+
position: [3], limit: [10]
+-------------------------------------------------+
| 0 1 2 3 4 5 6 7 8 9 a b c d e f |
+--------+-------------------------------------------------+----------------+
|00000000| 63 64 65 64 65 00 00 00 00 00 |cdede..... |
+--------+-------------------------------------------------+----------------+
// 可以看到后面两位de被覆盖
+--------+-------------------- all ------------------------+----------------+
position: [5], limit: [10]
+-------------------------------------------------+
| 0 1 2 3 4 5 6 7 8 9 a b c d e f |
+--------+-------------------------------------------------+----------------+
|00000000| 63 64 65 66 67 00 00 00 00 00 |cdefg..... |
+--------+-------------------------------------------------+----------------+
2.4 字符串与 ByteBuffer 的相互转换
方法一
编码:字符串调用getByte方法获得byte数组,将byte数组放入ByteBuffer中
解码:先调用ByteBuffer的flip方法,然后通过StandardCharsets的decoder方法解码
import java.nio.ByteBuffer;
import java.nio.charset.StandardCharsets;
public class Translate1 {
public static void main(String[] args) {
// 准备两个字符串
String str1 = "你好 世界";
String str2 = "";
ByteBuffer buffer1 = ByteBuffer.allocate(16);
// 通过字符串的getByte方法获得字节数组,放入缓冲区中
buffer1.put(str1.getBytes());
ByteBufferUtil.debugAll(buffer1);
// 将缓冲区中的数据转化为字符串
// 切换模式
buffer1.flip();
// 通过StandardCharsets解码,获得CharBuffer,再通过toString获得字符串
str2 = StandardCharsets.UTF_8.decode(buffer1).toString();
System.out.println(str2);
ByteBufferUtil.debugAll(buffer1);
}
}
结果
+--------+-------------------- all ------------------------+----------------+
position: [13], limit: [16]
+-------------------------------------------------+
| 0 1 2 3 4 5 6 7 8 9 a b c d e f |
+--------+-------------------------------------------------+----------------+
|00000000| e4 bd a0 e5 a5 bd 20 e4 b8 96 e7 95 8c 00 00 00 |...... .........|
+--------+-------------------------------------------------+----------------+
你好 世界
+--------+-------------------- all ------------------------+----------------+
position: [13], limit: [13]
+-------------------------------------------------+
| 0 1 2 3 4 5 6 7 8 9 a b c d e f |
+--------+-------------------------------------------------+----------------+
|00000000| e4 bd a0 e5 a5 bd 20 e4 b8 96 e7 95 8c 00 00 00 |...... .........|
+--------+-------------------------------------------------+----------------+
方法二
编码:通过StandardCharsets的encode方法获得ByteBuffer,此时获得的ByteBuffer为读模式,无需通过flip切换模式
解码:通过StandardCharsets的decoder方法解码
public class Translate {
public static void main(String[] args) {
// 准备两个字符串
String str1 = "hello";
String str2 = "";
// 通过StandardCharsets的encode方法获得ByteBuffer
// 此时获得的ByteBuffer为读模式,无需通过flip切换模式
ByteBuffer buffer1 = StandardCharsets.UTF_8.encode(str1);
ByteBufferUtil.debugAll(buffer1);
// 将缓冲区中的数据转化为字符串
// 通过StandardCharsets解码,获得CharBuffer,再通过toString获得字符串
str2 = StandardCharsets.UTF_8.decode(buffer1).toString();
System.out.println(str2);
ByteBufferUtil.debugAll(buffer1);
}
}
结果
+--------+-------------------- all ------------------------+----------------+
position: [0], limit: [5]
+-------------------------------------------------+
| 0 1 2 3 4 5 6 7 8 9 a b c d e f |
+--------+-------------------------------------------------+----------------+
|00000000| 68 65 6c 6c 6f |hello |
+--------+-------------------------------------------------+----------------+
hello
+--------+-------------------- all ------------------------+----------------+
position: [5], limit: [5]
+-------------------------------------------------+
| 0 1 2 3 4 5 6 7 8 9 a b c d e f |
+--------+-------------------------------------------------+----------------+
|00000000| 68 65 6c 6c 6f |hello |
+--------+-------------------------------------------------+----------------+
方法三
编码:字符串调用getByte()方法获得字节数组,将字节数组传给ByteBuffer的wrap()方法,通过该方法获得ByteBuffer。同样无需调用flip方法切换为读模式
解码:通过StandardCharsets的decoder方法解码
public class Translate {
public static void main(String[] args) {
// 准备两个字符串
String str1 = "hello";
String str2 = "";
// 通过StandardCharsets的encode方法获得ByteBuffer
// 此时获得的ByteBuffer为读模式,无需通过flip切换模式
ByteBuffer buffer1 = ByteBuffer.wrap(str1.getBytes());
ByteBufferUtil.debugAll(buffer1);
// 将缓冲区中的数据转化为字符串
// 通过StandardCharsets解码,获得CharBuffer,再通过toString获得字符串
str2 = StandardCharsets.UTF_8.decode(buffer1).toString();
System.out.println(str2);
ByteBufferUtil.debugAll(buffer1);
}
}
结果
+--------+-------------------- all ------------------------+----------------+
position: [0], limit: [5]
+-------------------------------------------------+
| 0 1 2 3 4 5 6 7 8 9 a b c d e f |
+--------+-------------------------------------------------+----------------+
|00000000| 68 65 6c 6c 6f |hello |
+--------+-------------------------------------------------+----------------+
hello
+--------+-------------------- all ------------------------+----------------+
position: [5], limit: [5]
+-------------------------------------------------+
| 0 1 2 3 4 5 6 7 8 9 a b c d e f |
+--------+-------------------------------------------------+----------------+
|00000000| 68 65 6c 6c 6f |hello |
+--------+-------------------------------------------------+----------------+
粘包与半包
现象
网络上有多条数据发送给服务端,数据之间使用 \n 进行分隔
但由于某种原因这些数据在接收时,被进行了重新组合,例如原始数据有3条为
- Hello,world\n
- I’m Nyima\n
- How are you?\n
变成了下面的两个 byteBuffer (粘包,半包)
- Hello,world\nI’m Nyima\nHo
- w are you?\n
出现原因
粘包
发送方在发送数据时,并不是一条一条地发送数据,而是将数据整合在一起,当数据达到一定的数量后再一起发送。这就会导致多条信息被放在一个缓冲区中被一起发送出去
半包
接收方的缓冲区的大小是有限的,当接收方的缓冲区满了以后,就需要将信息截断,等缓冲区空了以后再继续放入数据。这就会发生一段完整的数据最后被截断的现象
解决办法
- 通过get(index)方法遍历ByteBuffer,遇到分隔符时进行处理。注意:get(index)不会改变position的值
- 记录该段数据长度,以便于申请对应大小的缓冲区
- 将缓冲区的数据通过get()方法写入到target中
- 调用compact方法切换模式,因为缓冲区中可能还有未读的数据
public class TestByteBuffer3 {
public static void main(String[] args) {
ByteBuffer buffer = ByteBuffer.allocate(32);
// 模拟粘包+半包
buffer.put("Hello,world\nI'm Nyima\nHo".getBytes());
// 调用split函数处理
split(buffer);
buffer.put("w are you?\n".getBytes());
split(buffer);
}
private static void split(ByteBuffer buffer) {
// 切换成读模式
buffer.flip();
int oldLimit = buffer.limit();
for (int i = 0; i < buffer.limit(); i++) {
byte b = buffer.get(i);
if (b == '\n') {
System.out.println(i);
ByteBuffer target = ByteBuffer.allocate(i + 1 - buffer.position());
buffer.limit(i+1);
target.put(buffer);
ByteBufferUtil.debugAll(target);
buffer.limit(oldLimit);
}
}
// 切换为写模式,但是缓冲区可能未读完,这里需要使用compact
buffer.compact();
}
}
结果
+--------+-------------------- all ------------------------+----------------+
position: [12], limit: [12]
+-------------------------------------------------+
| 0 1 2 3 4 5 6 7 8 9 a b c d e f |
+--------+-------------------------------------------------+----------------+
|00000000| 48 65 6c 6c 6f 2c 77 6f 72 6c 64 0a |Hello,world. |
+--------+-------------------------------------------------+----------------+
21
+--------+-------------------- all ------------------------+----------------+
position: [10], limit: [10]
+-------------------------------------------------+
| 0 1 2 3 4 5 6 7 8 9 a b c d e f |
+--------+-------------------------------------------------+----------------+
|00000000| 49 27 6d 20 4e 79 69 6d 61 0a |I'm Nyima. |
+--------+-------------------------------------------------+----------------+
12
+--------+-------------------- all ------------------------+----------------+
position: [13], limit: [13]
+-------------------------------------------------+
| 0 1 2 3 4 5 6 7 8 9 a b c d e f |
+--------+-------------------------------------------------+----------------+
|00000000| 48 6f 77 20 61 72 65 20 79 6f 75 3f 0a |How are you?. |
+--------+-------------------------------------------------+----------------+
2. 文件编程
2.1 FileChannel
工作模式
FileChannel 只能工作在阻塞模式下
获取
不能直接打开 FileChannel,必须通过 FileInputStream、FileOutputStream 或者 RandomAccessFile 来获取 FileChannel,它们都有 getChannel 方法
- 通过 FileInputStream 获取的 channel 只能读
- 通过 FileOutputStream 获取的 channel 只能写
- 通过 RandomAccessFile 是否能读写根据构造 RandomAccessFile 时的读写模式决定
读取
会从 channel 读取数据填充 ByteBuffer,返回值表示读到了多少字节,-1 表示到达了文件的末尾
int
readBytes = channel.read(buffer);
可根据返回值判断是否读取完毕
while(channel.read(buffer) > 0) {
// 进行对应操作
...
}
写入
写入的正确姿势如下, SocketChannel
ByteBuffer buffer = ...;
buffer.put(...); // 存入数据
buffer.flip(); // 切换读模式
// 通过hasRemaining()方法查看缓冲区中是否还有数据未写入到通道中
while(buffer.hasRemaining()) {
channel.write(buffer);
}
在 while 中调用 channel.write 是因为 write 方法并不能保证一次将 buffer 中的内容全部写入 channel
关闭
channel 必须关闭,不过调用了 FileInputStream、FileOutputStream 或者 RandomAccessFile 的 close 方法会间接地调用 channel 的 close 方法。一般情况通过try-with-resource进行关闭,最好使用以下方法获取stream以及channel,避免某些原因使得资源未被关闭
public class TestChannel {
public static void main(String[] args) throws IOException {
try (FileInputStream fis = new FileInputStream("stu.txt");
FileOutputStream fos = new FileOutputStream("student.txt");
FileChannel inputChannel = fis.getChannel();
FileChannel outputChannel = fos.getChannel()) {
// 执行对应操作
...
}
}
}
位置
获取当前位置(也就是读取文件读取到那个位置了)
long pos = channel.position();
设置当前位置
long newPos = ...;
channel.position(newPos);
设置当前位置时,如果设置为文件的末尾
- 这时读取会返回 -1
- 这时写入,会追加内容,但要注意如果 position 超过了文件末尾,再写入时在新内容和原末尾之间会有空洞(00)
大小
使用 size 方法获取文件的大小
强制写入
操作系统出于性能的考虑,会将数据缓存,不是立刻写入磁盘。可以调用 force(true) 方法将文件内容和元数据(文件的权限等信息)立刻写入磁盘
2.2 两个 Channel 传输数据
使用transferTo方法可以快速、高效地将一个channel中的数据传输到另一个channel中,但一次只能传输2G的内容,
transferTo底层使用了零拷贝技术
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.nio.channels.FileChannel;
public class TestChannelTransferTo {
public static void main(String[] args) {
try (
FileChannel from = new FileInputStream("netty/data.txt").getChannel();
final FileChannel to = new FileOutputStream("netty/to.txt").getChannel();
) {
// 返回值为传输的数据的字节数
// 第一个参数为传输起点位置, 第二个参数为传输结束位置
from.transferTo(0, from.size(), to);
} catch (Exception e) {
e.printStackTrace();
}
}
}
当传输的文件大于2G时,需要使用以下方法进行多次传输
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;
import java.nio.channels.FileChannel;
public class TestChannelTransferToBigFile {
public static void main(String[] args) {
try (
FileChannel from = new FileInputStream("data.txt").getChannel();
FileChannel to = new FileOutputStream("to.txt").getChannel();
) {
// 效率高,底层会利用操作系统的零拷贝进行优化
long size = from.size();
// left 变量代表还剩余多少字节
for (long left = size; left > 0; ) {
System.out.println("position:" + (size - left) + " left:" + left);
left -= from.transferTo((size - left), left, to);
}
} catch (IOException e) {
e.printStackTrace();
}
}
}
2.3 Path 和 Paths
jdk7 引入了 Path 和 Paths 类
- Path 用来表示文件路径
- Paths 是工具类,用来获取 Path 实例
Path source = Paths.get("1.txt"); // 相对路径 使用 user.dir 环境变量来定位 1.txt
Path source = Paths.get("d:\\1.txt"); // 绝对路径 代表了 d:\1.txt
Path source = Paths.get("d:/1.txt"); // 绝对路径 同样代表了 d:\1.txt
Path projects = Paths.get("d:\\data", "projects"); // 代表了 d:\data\projects
-
.
代表了当前路径 -
..
代表了上一级路径
例如目录结构如下
d:
|- data
|- projects
|- a
|- b
代码
Path path = Paths.get("d:\\data\\projects\\a\\..\\b");
System.out.println(path);
System.out.println(path.normalize()); // 正常化路径
会输出
d:\data\projects\a\..\b
d:\data\projects\b
3.4 Files
检查文件是否存在
Path path = Paths.get("helloword/data.txt");
System.out.println(Files.exists(path));
创建一级目录
Path path = Paths.get("helloword/d1");
Files.createDirectory(path);
- 如果目录已存在,会抛异常 FileAlreadyExistsException
- 不能一次创建多级目录,否则会抛异常 NoSuchFileException
创建多级目录用
Path path = Paths.get("helloword/d1/d2");
Files.createDirectories(path);
拷贝文件
Path source = Paths.get("helloword/data.txt");
Path target = Paths.get("helloword/target.txt");
Files.copy(source, target);
- 如果文件已存在,会抛异常 FileAlreadyExistsException
如果希望用 source 覆盖掉 target,需要用 StandardCopyOption 来控制
Files.copy(source, target, StandardCopyOption.REPLACE_EXISTING);
移动文件
Path source = Paths.get("helloword/data.txt");
Path target = Paths.get("helloword/data.txt");
Files.move(source, target, StandardCopyOption.ATOMIC_MOVE);
- StandardCopyOption.ATOMIC_MOVE 保证文件移动的原子性
删除文件
Path target = Paths.get("helloword/target.txt");
Files.delete(target);
- 如果文件不存在,会抛异常 NoSuchFileException
删除目录
Path target = Paths.get("helloword/d1");
Files.delete(target);
- 如果目录还有内容,会抛异常 DirectoryNotEmptyException
遍历目录文件
可以使用Files工具类中的walkFileTree(Path, FileVisitor)方法,其中需要传入两个参数
- Path:文件起始路径
- FileVisitor:文件访问器,使用访问者模式
接口的实现类SimpleFileVisitor有四个方法
preVisitDirectory:访问目录前的操作
visitFile:访问文件的操作
visitFileFailed:访问文件失败时的操作
postVisitDirectory:访问目录后的操作
import java.io.IOException;
import java.nio.file.*;
import java.nio.file.attribute.BasicFileAttributes;
import java.util.concurrent.atomic.AtomicInteger;
public class TestFiles {
public static void main(String[] args) throws IOException {
Path path = Paths.get("D:\\Java\\jdk1.8.0_161");
AtomicInteger dirCount = new AtomicInteger();
AtomicInteger fileCount = new AtomicInteger();
Files.walkFileTree(path, new SimpleFileVisitor<Path>(){
@Override
public FileVisitResult preVisitDirectory(Path dir, BasicFileAttributes attrs)
throws IOException {
System.out.println(dir);
dirCount.incrementAndGet();
return super.preVisitDirectory(dir, attrs);
}
@Override
public FileVisitResult visitFile(Path file, BasicFileAttributes attrs)
throws IOException {
System.out.println(file);
fileCount.incrementAndGet();
return super.visitFile(file, attrs);
}
});
System.out.println(dirCount); // 133
System.out.println(fileCount); // 1479
}
}
删除多级目录
Path path = Paths.get("d:\\a");
Files.walkFileTree(path, new SimpleFileVisitor<Path>(){
@Override
public FileVisitResult visitFile(Path file, BasicFileAttributes attrs)
throws IOException {
Files.delete(file);
return super.visitFile(file, attrs);
}
@Override
public FileVisitResult postVisitDirectory(Path dir, IOException exc)
throws IOException {
Files.delete(dir);
return super.postVisitDirectory(dir, exc);
}
});
拷贝多级目录
long start = System.currentTimeMillis();
String source = "D:\\Snipaste-1.16.2-x64";
String target = "D:\\Snipaste-1.16.2-x64aaa";
Files.walk(Paths.get(source)).forEach(path -> {
try {
String targetName = path.toString().replace(source, target);
// 是目录
if (Files.isDirectory(path)) {
Files.createDirectory(Paths.get(targetName));
}
// 是普通文件
else if (Files.isRegularFile(path)) {
Files.copy(path, Paths.get(targetName));
}
} catch (IOException e) {
e.printStackTrace();
}
});
long end = System.currentTimeMillis();
System.out.println(end - start);
3. 网络编程
3.1 非阻塞 vs 阻塞
阻塞
- 阻塞模式下,相关方法都会导致线程暂停
- ServerSocketChannel.accept 会在没有连接建立时让线程暂停
- SocketChannel.read 会在没有数据可读时让线程暂停
- 阻塞的表现其实就是线程暂停了,暂停期间不会占用 cpu,但线程相当于闲置
- 单线程下,阻塞方法之间相互影响,几乎不能正常工作,需要多线程支持
- 但多线程下,有新的问题,体现在以下方面
- 32 位 jvm 一个线程 320k,64 位 jvm 一个线程 1024k,如果连接数过多,必然导致 OOM,并且线程太多,反而会因为频繁上下文切换导致性能降低
- 可以采用线程池技术来减少线程数和线程上下文切换,但治标不治本,如果有很多连接建立,但长时间 inactive,会阻塞线程池中所有线程,因此不适合长连接,只适合短连接