# coding:utf-8
import tree
'''
二叉排序树或者是一棵空树,或者是具有下列性质的二叉树:
(1)若左子树不空,则左子树上所有结点的值均小于或等于它的根结点的值;
(2)若右子树不空,则右子树上所有结点的值均大于或等于它的根结点的值;
(3)左、右子树也分别为二叉排序树;
(4) 没有键值相等的节点
'''
'''定义一个类继承Tree类'''
class BSTree(tree.Tree):
def __init__(self, node=None):
tree.Tree.__init__(self, node)
def add_node(self, node):
'''向树中添加节点,也就是构建树
1.如果根节点为空,创建根节点
2.将加入节点值与根节点比较,大了放右节点,小了放左节点
'''
if self.root is None:
self.root = node
return
temp = self.root
node_val = node.get()
while temp:
temp_val = temp.get()
if node_val > temp_val:
if temp.r_child:
temp = temp.r_child
else:
temp.r_child = node
return
elif node_val <= temp_val:
if temp.l_child:
temp = temp.l_child
else:
temp.l_child = node
return
def del_node(self, node):
'''首先找到node节点'''
temp = self.root
node_val = node.get()
father_node = None
while temp:
temp_val = temp.get()
if node_val < temp_val:
'''小于进入左子树查找'''
father_node = temp
temp = temp.l_child
elif node_val > temp_val:
'''大于进入右子树查找'''
father_node = temp
temp = temp.r_child
else:
'''找到节点'''
if temp.l_child is None or temp.r_child is None:
'''叶节点,直接删除'''
lr_node = temp.l_child if temp.l_child else temp.r_child
if father_node is not None:
'''temp is root'''
if father_node.l_child == temp:
father_node.l_child = lr_node
else:
father_node.r_child = lr_node
else:
self.root = lr_node
else:
right_node = temp.l_child
father_right_node = None
'''查找用左子树的最右边节点代替删除的节点'''
while right_node.r_child:
father_right_node = right_node
right_node = right_node.r_child
if father_node is None:
self.root = right_node
else:
if father_node.l_child == temp:
father_node.l_child = right_node
else:
father_node.r_child = right_node
if father_right_node is not None:
father_right_node.r_child = right_node.l_child
right_node.l_child = temp.l_child
right_node.r_child = temp.r_child
temp = None
return
def test():
bstree = BSTree()
import random
N = 15
values = range(N)
values = random.sample(values, N)
# values = [15, 5, 4, 2, 3, 0, 13, 1, 18, 11, 8, 7, 17, 9, 12, 14, 16, 6, 10]
# values = [8, 4, 7, 0, 6, 3, 9, 2, 5, 1]
# values = [0, 8, 6, 9, 2, 1, 3, 7, 4, 5]
nodes = [tree.Node(el) for el in values]
print values
for i in range(N):
bstree.add_node(nodes[i])
num = bstree.stack_preorder_trvalsal(bstree.root)
bstree.recur_preorder_trvalsal(bstree.root)
if num != N:
print 'error', num
bstree.graph_tree()
for i in range(-1):
bstree.del_node(nodes[i])
bstree.recur_midorder_trvalsal(bstree.root)
print '***************', nodes[i].get()
if __name__ == '__main__':
test()
二叉搜索树
©著作权归作者所有,转载或内容合作请联系作者
- 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
- 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
- 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
推荐阅读更多精彩内容
- BST树即二叉搜索树:1.所有非叶子结点至多拥有两个儿子(Left和Right);2.所有结点存储一个关键字;3....
- 关于树的总结从二叉树->二叉搜索树->平衡二叉树->红黑树->B树与B+树 B+树介绍 B树、B-树、B+树、B*...
- 树 概念它是由n(n>0)个有限节点组成一个具有层次关系的集合。 特点 每个节点有零个或多个子节点; 没有父节点的...