1 前言
Ascend Transformer Boost加速库(下文简称为ATB加速库)是一款高效、可靠的加速库,基于华为Ascend AI处理器,专门为Transformer类模型的训练和推理而设计。具体请阅读:ATB是什么?
那么程序猿小白如何实现一个ATB算子呢?
2 具体实现一个ATB算子
以下内容参考:
算子使用指导-加速库使用指导-Ascend Transformer Boost加速库-领域加速库开发-CANN商用版8.0.RC2.2开发文档-昇腾社区
实现一个ATB算子大概要有以下10个步骤,如下图所示。
step 1: 包含ACL与加速库接口头文件
#include <acl/acl.h>
#include <atb/atb_infer.h>
#include <atb/types.h>
#include <atb/utils.h>
#include "atb/infer_op_params.h"
这里要注意:
- 首先要安装atb相关的so文件,才能获取到相关头文件,保证程序链接不出错。
- 不同的算子,可能包含的头文件并不相同。
- 其它头文件,自定义添加
参考:
安装部署-Ascend Transformer Boost加速库-领域加速库开发-CANN商用版8.0.RC2.2开发文档-昇腾社区
step 2: 配置deviceId
uint32_t deviceId = 0;
aclError status = aclrtSetDevice(deviceId);
根据需求设置deviceId,如单机多卡,asecnd可用的deviceId为0-7(总共8张卡)。
step 3: 创建算子对象实例
从前文ATB是什么? ATB总共有3种算子实现,下文分别进行说明。
1、基础Operation(原生算子)
第一步:构造Operation参数
根据要创建的算子,实例化参数结构体,参数结构体的接口定义参考atb/infer_op_params.h和atb/train_op_params.h。
以Mul算子为例,Mul算子归属于Elewise,可通过以下方式构造对应参数:
atb::infer::ElewiseParam mulParam;
mulParam.elewiseType = atb::infer::ElewiseParam::ElewiseType::ELEWISE_MUL;
第二步:创建算子对象实例
atb::Operation *op = nullptr;
atb::Status st = atb::CreateOperation(mulParam, &op);
2、插件(Plugin)机制(插件算子)
插件算子需要是使用Ascend c或者其它方式实现kernel。
建议直接本文3.2章节。
参考:
第一步:开发算子
以使用Ascend C创建Add算子为例,用户可根据实际需求选择其他方式实现自定义算子。
参考如下:kernel_add.cpp
plugin_op_demo/kernel/kernel_add.cpp · Si1verBul1et623548/atb-op-demo - 码云 - 开源中国 (gitee.com)
第二步:创建算子对象实例
CustomOperation*op = new CustomOperation("CustomOperation");
3、Graph Frame(图算子)
图算子有配置TensorId和配置TensorName组图两种创建和使用方式。
根据如下图算子结构图:
可以明确出,TensorId与TensorName对应关系配置如下:
表1 TensorId与TensorName对应关系配置
组图方式1:配置TensorId
第一步:构造Operation参数
与单算子的参数不同,图算子的参数包含图节点、输入Tensor数、输出Tensor数、中间Tensor数等图相关的信息。
首先,根据设计的图算子结构,分别计算出图输入Tensor(假设为x个),图输出Tensor(假设为y个)以及图中间Tensor(假设为z个)的个数。 图输入Tensor的Id取值为[0, x - 1],图输出Tensor的Id取值为[x, x + y - 1],图中间Tensor的Id取值为[x + y, x + y + z - 1]。示例对应关系见表1Tensor与TensorId列。
然后,配置每一个节点的相关信息,包括创建好的单算子对象实例、输入Tensor和输出Tensor。该节点的输入和输出Tensor在图里可能是图的输入Tensor、输出Tensor或中间Tensor,用户需根据其所属的图Tensor类型,在合适的范围内取值。
实例中的op0和op1创建过程可参考单算子的创建。
atb::GraphParam graphParam;
graphParam.inTensorNum = 3; // 指定该图的输入Tensor数量
graphParam.outTensorNum = 1; // 指定该图的输出Tensor数量
graphParam.internalTensorNum = 1; // 指定该图的中间Tensor数量
graphParam.nodes.resize(2); // 指定该图中的节点数量,即包含的单算子数量
graphParam.nodes[0].operation = op0; // 指定该图中的节点0的单算子对象实例
graphParam.nodes[0].inTensorIds = {0, 1}; // 指定该图中的节点0需要的输入Tensor所对应的id
graphParam.nodes[0].outTensorIds = {4}; // 指定该图中的节点0输出的输出Tensor所对应的id
graphParam.nodes[1].operation = op1; // 指定该图中的节点1的单算子对象实例
graphParam.nodes[1].inTensorIds = {4, 2}; // 指定该图中的节点1需要的输入Tensor所对应的id
graphParam.nodes[1].outTensorIds = {3}; // 指定该图中的节点1输出的输出Tensor所对应的id
第二步:创建算子对象实例
atb::Operation *op = nullptr;
atb::Status st = atb::CreateOperation(graphParam, &op);
组图方式2:配置TensorId
使用TensorId组图需要提前定义,操作过程繁琐。该组图通过字符串定义每个Tensor,可行性更高。示例对应关系见上表1种Tensor与TensorName。
第一步:创建图算子构造器
atb::GraphOpBuilder* graphOpBuilder;
CreateGraphOpBuilder(&graphOpBuilder);
第二步:初始化图算子构造器
// lambda函数,通过图算子的输入TensorDesc推导输出TensorDesc,包括DataType、Format、Shape等
atb::InferShapeFunc inferShapeFunc = [=](const atb::SVector<atb::TensorDesc> &inTensorDescs, atb::SVector<atb::TensorDesc> &outTensorDescs) {
outTensorDescs.at(0) = inTensorDescs.at(0);
return atb::NO_ERROR;
};
graphOpBuilder->Init("DemoGraphOperation", inferShapeFunc, {"a", "b", "c"}, {"output"});
第三步:用图算子构造器构图
构图时可通过定义lambda函数对Tensor进行reshape,需保证reshape前后的shape大小一致。
op0等单算子的创建过程可参考上述单算子的创建。
graphOpBuilder->AddOperation(op0, {"a", "b"}, {"a_add_b_output"});
graphOpBuilder->AddOperation(op1, {"a_add_b_output", "c"}, {"output"});
第四步:用图算子构造器构图
atb::Operation *op = graphOpBuilder->Build(); // 使用时需判断op是否为空指针
DestroyGraphOpBuilder(graphOpBuilder); // 销毁图算子构造器
step 4: 创建输入输出tensor,并存入VariantPack
VariantPack中包含输入和输出Tensor列表。VariantPack中传入的每个输入Tensor要求大于0且不超过256GB。
// 设置各个intensor的属性
void CreateInTensorDescs(atb::SVector<atb::TensorDesc> &intensorDescs)
{
for (size_t i = 0; i < intensorDescs.size(); i++) {
intensorDescs.at(i).dtype = ACL_FLOAT16;
intensorDescs.at(i).format = ACL_FORMAT_ND;
intensorDescs.at(i).shape.dimNum = 2;
intensorDescs.at(i).shape.dims[0] = 2;
intensorDescs.at(i).shape.dims[1] = 2;
}
}
// 设置各个intensor并且为各个intensor分配内存空间,此处的intensor为手动设置,工程实现上可以使用torchTensor转换或者其他简单数据结构转换的方式
void CreateInTensors(atb::SVector<atb::Tensor> &inTensors, atb::SVector<atb::TensorDesc> &intensorDescs)
{
std::vector<char> zeroData(8, 0); // 一段全0的hostBuffer
for (size_t i = 0; i < inTensors.size(); i++) {
inTensors.at(i).desc = intensorDescs.at(i);
inTensors.at(i).dataSize = atb::Utils::GetTensorSize(inTensors.at(i));
int ret = aclrtMalloc(&inTensors.at(i).deviceData, inTensors.at(i).dataSize, ACL_MEM_MALLOC_HUGE_FIRST); // 分配NPU内存
if (ret != 0) {
std::cout << "alloc error!";
exit(0);
}
ret = aclrtMemcpy(inTensors.at(i).deviceData, inTensors.at(i).dataSize, zeroData.data(), zeroData.size(), ACL_MEMCPY_HOST_TO_DEVICE); //拷贝CPU内存到NPU侧
}
}
// 设置各个outtensor并且为outtensor分配内存空间,同intensor设置
void CreateOutTensors(atb::SVector<atb::Tensor> &outTensors, atb::SVector<atb::TensorDesc> &outtensorDescs)
{
for (size_t i = 0; i < outTensors.size(); i++) {
outTensors.at(i).desc = outtensorDescs.at(i);
outTensors.at(i).dataSize = atb::Utils::GetTensorSize(outTensors.at(i));
int ret = aclrtMalloc(&outTensors.at(i).deviceData, outTensors.at(i).dataSize, ACL_MEM_MALLOC_HUGE_FIRST);
if (ret != 0) {
std::cout << "alloc error!";
exit(0);
}
}
}
// 按上述方法构造所有输入和输出tensor,存入VariantPack
atb::VariantPack pack;
atb::SVector<atb::TensorDesc> intensorDescs;
atb::SVector<atb::TensorDesc> outtensorDescs;
uint32_t inTensorNum = op->GetInputNum();
uint32_t outTensorNum = op->GetOutputNum();
pack.inTensors.resize(inTensorNum);
intensorDescs.resize(inTensorNum);
CreateInTensorDescs(intensorDescs);
CreateInTensors(pack.inTensors, intensorDescs);
outtensorDescs.resize(outTensorNum);
pack.outTensors.resize(outTensorNum);
op->InferShape(intensorDescs, outtensorDescs);
CreateOutTensors(pack.outTensors, outtensorDescs);
step 5: 创建context,配置stream
Context主要负责对NPU中使用的Stream进行管理。
atb::Context *context = nullptr;
st = atb::CreateContext(&context);
aclrtStream stream = nullptr;
status = aclrtCreateStream(&stream);
context->SetExecuteStream(stream);
step 6: 调用Setup接口,计算workspace大小
uint64_t workspaceSize = 0;
st = op->Setup(pack, workspaceSize, context);
step 7: 根据workspace大小申请NPU内存
void *workspace = nullptr;
if (workspaceSize != 0) {
status = aclrtMalloc(&workspace, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
if (status != 0) {
std::cout << "alloc error!";
exit(0);
}
}
当workspace大小为0时,无需执行该步骤,否则会报错。
step 8: 调用Execute接口,执行算子
st = op->Execute(pack, (uint8_t *)workspace, workspaceSize, context);
step 9: 销毁创建的对象,释放内存
// 流同步,作用是等待device侧任务计算完成
auto ret = aclrtSynchronizeStream(stream);
if (ret != 0) {
std::cout << "sync error!";
exit(0);
}
status = aclrtDestroyStream(stream); // 销毁stream
st = atb::DestroyOperation(op); // 销毁op对象
st = atb::DestroyContext(context); // 销毁context
// 销毁输入tensor
for (size_t i = 0; i < pack.inTensors.size(); i++) {
aclrtFree(pack.inTensors.at(i).deviceData);
}
// 销毁输出tensor
for (size_t i = 0; i < pack.outTensors.size(); i++) {
aclrtFree(pack.outTensors.at(i).deviceData);
}
aclrtFree(pack.outTensors.at(0).deviceData); // 销毁输出tensor
status = aclrtFree(workspace); // 销毁workspace
aclrtResetDevice(deviceId); // 重置deviceId
step 10: demo运行
编译源文件:
# g++编译demo工程,demo.cpp为demo对应的源码文件
g++ -I "${ATB_HOME_PATH}/include" -I "${ASCEND_HOME_PATH}/include" -L "${ATB_HOME_PATH}/lib" -L "${ASCEND_HOME_PATH}/lib64" demo.cpp -l atb -l ascendcl -o demo
这里:
ATB_HOME_PATH:指的是atb库文件的安装路径。
执行:
./demo # 运行可执行文件
3 完整代码文件
3.1 单算子完整示例
文件命名为atb_mul_operation.cpp
// step1:包含ACL与加速库接口头文件
#include <iostream>
#include <vector>
#include <acl/acl.h>
#include <atb/atb_infer.h>
#include <atb/types.h>
#include <atb/utils.h>
#include "atb/infer_op_params.h"
void CreateInTensorDescs(atb::SVector<atb::TensorDesc> &intensorDescs)
{
for (size_t i = 0; i < intensorDescs.size(); i++) {
intensorDescs.at(i).dtype = ACL_FLOAT16;
intensorDescs.at(i).format = ACL_FORMAT_ND;
intensorDescs.at(i).shape.dimNum = 2;
intensorDescs.at(i).shape.dims[0] = 2;
intensorDescs.at(i).shape.dims[1] = 2;
}
}
// 设置各个intensor并且为各个intensor分配内存空间,此处的intensor为手动设置,工程实现上可以使用torchTensor转换或者其他简单数据结构转换的方式
void CreateInTensors(atb::SVector<atb::Tensor> &inTensors, atb::SVector<atb::TensorDesc> &intensorDescs)
{
std::vector<char> zeroData(8, 0); // 一段全0的hostBuffer
for (size_t i = 0; i < inTensors.size(); i++) {
inTensors.at(i).desc = intensorDescs.at(i);
inTensors.at(i).dataSize = atb::Utils::GetTensorSize(inTensors.at(i));
int ret = aclrtMalloc(&inTensors.at(i).deviceData, inTensors.at(i).dataSize, ACL_MEM_MALLOC_HUGE_FIRST); // 分配NPU内存
if (ret != 0) {
std::cout << "alloc error!";
exit(0);
}
ret = aclrtMemcpy(inTensors.at(i).deviceData, inTensors.at(i).dataSize, zeroData.data(), zeroData.size(), ACL_MEMCPY_HOST_TO_DEVICE); //拷贝CPU内存到NPU侧
}
}
// 设置各个outtensor并且为outtensor分配内存空间,同intensor设置
void CreateOutTensors(atb::SVector<atb::Tensor> &outTensors, atb::SVector<atb::TensorDesc> &outtensorDescs)
{
for (size_t i = 0; i < outTensors.size(); i++) {
outTensors.at(i).desc = outtensorDescs.at(i);
outTensors.at(i).dataSize = atb::Utils::GetTensorSize(outTensors.at(i));
int ret = aclrtMalloc(&outTensors.at(i).deviceData, outTensors.at(i).dataSize, ACL_MEM_MALLOC_HUGE_FIRST);
if (ret != 0) {
std::cout << "alloc error!";
exit(0);
}
}
}
int main() {
// step2:配置deviceId
uint32_t deviceId = 0;
aclError status = aclrtSetDevice(deviceId);
// step3:创建算子对象实例,以Mul算子为例,Mul算子归属于Elewise,可通过以下方式构造对应参数
// 第一步:构造Operation参数
atb::infer::ElewiseParam mulParam;
mulParam.elewiseType = atb::infer::ElewiseParam::ElewiseType::ELEWISE_MUL;
// 第二步:创建算子对象实例
atb::Operation *op = nullptr;
atb::Status st = atb::CreateOperation(mulParam, &op);
// step4:创建输入输出tensor,并存入VariantPack
atb::VariantPack pack;
atb::SVector<atb::TensorDesc> intensorDescs;
atb::SVector<atb::TensorDesc> outtensorDescs;
uint32_t inTensorNum = op->GetInputNum();
uint32_t outTensorNum = op->GetOutputNum();
pack.inTensors.resize(inTensorNum);
intensorDescs.resize(inTensorNum);
CreateInTensorDescs(intensorDescs);
CreateInTensors(pack.inTensors, intensorDescs);
outtensorDescs.resize(outTensorNum);
pack.outTensors.resize(outTensorNum);
op->InferShape(intensorDescs, outtensorDescs);
CreateOutTensors(pack.outTensors, outtensorDescs);
// step5:创建context,配置stream
atb::Context *context = nullptr;
st = atb::CreateContext(&context);
aclrtStream stream = nullptr;
status = aclrtCreateStream(&stream);
context->SetExecuteStream(stream);
// step6:调用Setup接口,计算workspace大小
uint64_t workspaceSize = 0;
st = op->Setup(pack, workspaceSize, context);
// step7:根据workspace大小申请NPU内存
void *workspace = nullptr;
if (workspaceSize != 0) {
status = aclrtMalloc(&workspace, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
if (status != 0) {
std::cout << "alloc error!";
exit(0);
}
}
// step8:调用Execute接口,执行算子
st = op->Execute(pack, (uint8_t *)workspace, workspaceSize, context);
// step9:销毁创建的对象,释放内存
// 流同步,作用是等待device侧任务计算完成
auto ret = aclrtSynchronizeStream(stream);
if (ret != 0) {
std::cout << "sync error!";
exit(0);
}
status = aclrtDestroyStream(stream); // 销毁stream
st = atb::DestroyOperation(op); // 销毁op对象
st = atb::DestroyContext(context); // 销毁context
// 销毁输入tensor
for (size_t i = 0; i < pack.inTensors.size(); i++) {
aclrtFree(pack.inTensors.at(i).deviceData);
}
// 销毁输出tensor
for (size_t i = 0; i < pack.outTensors.size(); i++) {
aclrtFree(pack.outTensors.at(i).deviceData);
}
status = aclrtFree(workspace); // 销毁workspace
aclrtResetDevice(deviceId); // 重置deviceId
return 0;
}
也可以参考:
single_op_demo/single_op_demo.cpp · Si1verBul1et623548/atb-op-demo - 码云 - 开源中国 (gitee.com)
编译运行:
# g++编译demo工程,demo.cpp为demo对应的源码文件
g++ -I "${ATB_HOME_PATH}/include" -I "${ASCEND_HOME_PATH}/include" -L "${ATB_HOME_PATH}/lib" -L "${ASCEND_HOME_PATH}/lib64" atb_mul_operation.cpp -l atb -l ascendcl -o atb_mul_operation
# 运行可执行文件
./atb_mul_operation
3.2 插件(Plugin)机制(插件算子)完整示例
参考:
Si1verBul1et623548/atb-op-demo
gitee.com/geyunqi/atb-op-demo/tree/master/plugin_op_demo
进入到plugin_op_demo目录后,执行
bash run.sh
在plugin_op_demo/build得到输出
total 68
drwxr-xr-x. 3 root root 4096 Sep 29 20:02 ./
drwxr-xr-x. 5 root root 4096 Sep 29 20:02 ../
-rw-r--r--. 1 root root 14543 Sep 29 20:02 CMakeCache.txt
drwxr-xr-x. 6 root root 4096 Sep 29 20:02 CMakeFiles/
-rw-r--r--. 1 root root 5773 Sep 29 20:02 Makefile
-rw-r--r--. 1 root root 1664 Sep 29 20:02 cmake_install.cmake
-rwxr-xr-x. 1 root root 27720 Sep 29 20:02 libplugin_add.so*
可见,当前编译为一个动态库so的形式。但是里面的过程,已经能够描述清楚为plugin的单算子怎么写。
3.3 Graph Frame(图算子)
3.3.1按照组图方式1:配置TensorId实现
文件命名为atb_add_graph_by_tensor_id.cpp
// step1:包含ACL与加速库接口头文件
#include <iostream>
#include <vector>
#include <acl/acl.h>
#include <atb/atb_infer.h>
#include <atb/types.h>
#include <atb/utils.h>
#include "atb/infer_op_params.h"
void CreateInTensorDescs(atb::SVector<atb::TensorDesc> &intensorDescs)
{
for (size_t i = 0; i < intensorDescs.size(); i++) {
intensorDescs.at(i).dtype = ACL_FLOAT16;
intensorDescs.at(i).format = ACL_FORMAT_ND;
intensorDescs.at(i).shape.dimNum = 2;
intensorDescs.at(i).shape.dims[0] = 2;
intensorDescs.at(i).shape.dims[1] = 2;
}
}
// 设置各个intensor并且为各个intensor分配内存空间,此处的intensor为手动设置,工程实现上可以使用torchTensor转换或者其他简单数据结构转换的方式
void CreateInTensors(atb::SVector<atb::Tensor> &inTensors, atb::SVector<atb::TensorDesc> &intensorDescs)
{
for (size_t i = 0; i < inTensors.size(); i++) {
inTensors.at(i).desc = intensorDescs.at(i);
inTensors.at(i).dataSize = atb::Utils::GetTensorSize(inTensors.at(i));
std::vector<uint16_t> hostData(atb::Utils::GetTensorNumel(inTensors.at(i)), 2); // 一段全2的hostBuffer
int ret = aclrtMalloc(&inTensors.at(i).deviceData, inTensors.at(i).dataSize, ACL_MEM_MALLOC_HUGE_FIRST); // 分配NPU内存
if (ret != 0) {
std::cout << "alloc error!";
exit(0);
}
ret = aclrtMemcpy(inTensors.at(i).deviceData, inTensors.at(i).dataSize, hostData.data(), hostData.size() * sizeof(uint16_t), ACL_MEMCPY_HOST_TO_DEVICE); //拷贝CPU内存到NPU侧
}
}
// 设置各个outtensor并且为outtensor分配内存空间,同intensor设置
void CreateOutTensors(atb::SVector<atb::Tensor> &outTensors, atb::SVector<atb::TensorDesc> &outtensorDescs)
{
for (size_t i = 0; i < outTensors.size(); i++) {
outTensors.at(i).desc = outtensorDescs.at(i);
outTensors.at(i).dataSize = atb::Utils::GetTensorSize(outTensors.at(i));
int ret = aclrtMalloc(&outTensors.at(i).deviceData, outTensors.at(i).dataSize, ACL_MEM_MALLOC_HUGE_FIRST);
if (ret != 0) {
std::cout << "alloc error!";
exit(0);
}
}
}
//在构造图参数时,有两个点需要重点关注。一是Tensor的ID,ATB图接口中把Tensor分为三种类型,输入、输出和中间Tensor,顾名思义,输入输出Tensor是整图的输入输出Tensor,中间tensor则是在整图内的Tensor。构图时的TensorID从小到大应保证//为输入Tensor、输出Tensor、中间Tensor的顺序,且每一种Tensor的个数要与参数中设置的一致。二是要注意排布Node的顺序,用户需要根据计算图的拓扑结构把计算图变成一个有序队列,同时还要保证tensor与节点之间的关系和计算图保持一致。
void CreateGraphOperation(atb::GraphParam &opGraph, atb::Operation **operation)
{
// 构图流程
opGraph.inTensorNum = 4;
opGraph.outTensorNum = 1;
opGraph.internalTensorNum = 2;
opGraph.nodes.resize(3);
enum InTensorId { //定义各TensorID
IN_TENSOR_A = 0,
IN_TENSOR_B,
IN_TENSOR_C,
IN_TENSOR_D,
ADD3_OUT,
ADD1_OUT,
ADD2_OUT
};
size_t nodeId = 0;
atb::Node &addNode = opGraph.nodes.at(nodeId++);
atb::Node &addNode2 = opGraph.nodes.at(nodeId++);
atb::Node &addNode3 = opGraph.nodes.at(nodeId++);
atb::infer::ElewiseParam addParam;
addParam.elewiseType = atb::infer::ElewiseParam::ElewiseType::ELEWISE_ADD;
atb::Status status = atb::CreateOperation(addParam, &addNode.operation);
addNode.inTensorIds = {IN_TENSOR_A, IN_TENSOR_B};
addNode.outTensorIds = {ADD1_OUT};
atb::infer::ElewiseParam addParam2;
addParam2.elewiseType = atb::infer::ElewiseParam::ElewiseType::ELEWISE_ADD;
status = atb::CreateOperation(addParam2, &addNode2.operation);
addNode2.inTensorIds = {IN_TENSOR_C, IN_TENSOR_D};
addNode2.outTensorIds = {ADD2_OUT};
atb::infer::ElewiseParam addParam3;
addParam3.elewiseType = atb::infer::ElewiseParam::ElewiseType::ELEWISE_ADD;
status = CreateOperation(addParam3, &addNode3.operation);
addNode3.inTensorIds = {ADD1_OUT, ADD2_OUT};
addNode3.outTensorIds = {ADD3_OUT};
status = atb::CreateOperation(opGraph, operation);
}
void PrintOutTensorValue(atb::Tensor &outTensor)
{
// 输出Tensor拷贝回host侧并打印
std::vector<uint16_t> outBuffer(atb::Utils::GetTensorNumel(outTensor));
int ret = aclrtMemcpy(outBuffer.data(), outBuffer.size() * sizeof(uint16_t), outTensor.deviceData, outTensor.dataSize, ACL_MEMCPY_DEVICE_TO_HOST);
if (ret != 0) {
std::cout << "copy error!";
exit(0);
}
for (size_t i = 0; i < outBuffer.size(); i = i + 1) {
std::cout << "out[" << i << "] = " << (uint32_t)outBuffer.at(i) << std::endl;
}
}
int main() {
// step2:配置deviceId
uint32_t deviceId = 0;
aclError status = aclrtSetDevice(deviceId);
// step3:创建图算子对象实例
// 第一步:构造Operation参数
atb::Operation *op = nullptr;
atb::GraphParam opGraph;
// 第二步:创建opGraph
CreateGraphOperation(opGraph, &op);
// step4:创建输入输出tensor,并存入VariantPack
atb::VariantPack pack;
atb::SVector<atb::TensorDesc> intensorDescs;
atb::SVector<atb::TensorDesc> outtensorDescs;
uint32_t inTensorNum = op->GetInputNum();
uint32_t outTensorNum = op->GetOutputNum();
pack.inTensors.resize(inTensorNum);
intensorDescs.resize(inTensorNum);
CreateInTensorDescs(intensorDescs);
CreateInTensors(pack.inTensors, intensorDescs);
outtensorDescs.resize(outTensorNum);
pack.outTensors.resize(outTensorNum);
op->InferShape(intensorDescs, outtensorDescs);
CreateOutTensors(pack.outTensors, outtensorDescs);
// step5:创建context,配置stream
atb::Context *context = nullptr;
auto st = atb::CreateContext(&context);
aclrtStream stream = nullptr;
status = aclrtCreateStream(&stream);
context->SetExecuteStream(stream);
// step6:调用Setup接口,计算workspace大小
uint64_t workspaceSize = 0;
st = op->Setup(pack, workspaceSize, context);
// step7:根据workspace大小申请NPU内存
void *workspace = nullptr;
if (workspaceSize != 0) {
status = aclrtMalloc(&workspace, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
if (status != 0) {
std::cout << "alloc error!";
exit(0);
}
}
// step8:调用Execute接口,执行算子
st = op->Execute(pack, (uint8_t *)workspace, workspaceSize, context);
// step9:销毁创建的对象,释放内存
// 流同步,作用是等待device侧任务计算完成
auto ret = aclrtSynchronizeStream(stream);
if (ret != 0) {
std::cout << "sync error!";
exit(0);
}
// 打印输出Tensor的值
PrintOutTensorValue(pack.outTensors.at(0));
status = aclrtDestroyStream(stream); // 销毁stream
st = atb::DestroyOperation(op); // 销毁op对象
st = atb::DestroyContext(context); // 销毁context
// 销毁输入tensor
for (size_t i = 0; i < pack.inTensors.size(); i++) {
aclrtFree(pack.inTensors.at(i).deviceData);
}
// 销毁输出tensor
for (size_t i = 0; i < pack.outTensors.size(); i++) {
aclrtFree(pack.outTensors.at(i).deviceData);
}
status = aclrtFree(workspace); // 销毁workspace
aclrtResetDevice(deviceId); // 重置deviceId
return 0;
}
编译运行:
# g++编译demo工程,demo.cpp为demo对应的源码文件
g++ -I "${ATB_HOME_PATH}/include" -I "${ASCEND_HOME_PATH}/include" -L "${ATB_HOME_PATH}/lib" -L "${ASCEND_HOME_PATH}/lib64" atb_add_graph_by_tensor_id.cpp -l atb -l ascendcl -o atb_add_graph_by_tensor_id
# 运行可执行文件
./atb_add_graph_by_tensor_id
# 如果运行出现coredump,尝试在g++的编译命令中添加-D_GLIBCXX_USE_CXX11_ABI=0,也就是上述的编译命令为:
#g++ -D_GLIBCXX_USE_CXX11_ABI=0 -I "${ATB_HOME_PATH}/include" -I "${ASCEND_HOME_PATH}/include" -L "${ATB_HOME_PATH}/lib" -L "${ASCEND_HOME_PATH}/lib64" atb_add_graph_by_tensor_id.cpp -l atb -l ascendcl -o atb_add_graph_by_tensor_id
3.3.2按照组图方式2:配置TensorName实现。
文件命名为atb_add_graph_by_tensor_name.cpp
// step1:包含ACL与加速库接口头文件
#include <iostream>
#include <vector>
#include <acl/acl.h>
#include <atb/atb_infer.h>
#include <atb/types.h>
#include <atb/utils.h>
#include "atb/infer_op_params.h"
void CreateInTensorDescs(atb::SVector<atb::TensorDesc> &intensorDescs)
{
for (size_t i = 0; i < intensorDescs.size(); i++) {
intensorDescs.at(i).dtype = ACL_FLOAT16;
intensorDescs.at(i).format = ACL_FORMAT_ND;
intensorDescs.at(i).shape.dimNum = 2;
intensorDescs.at(i).shape.dims[0] = 2;
intensorDescs.at(i).shape.dims[1] = 2;
}
}
// 设置各个intensor并且为各个intensor分配内存空间,此处的intensor为手动设置,工程实现上可以使用torchTensor转换或者其他简单数据结构转换的方式
void CreateInTensors(atb::SVector<atb::Tensor> &inTensors, atb::SVector<atb::TensorDesc> &intensorDescs)
{
for (size_t i = 0; i < inTensors.size(); i++) {
inTensors.at(i).desc = intensorDescs.at(i);
inTensors.at(i).dataSize = atb::Utils::GetTensorSize(inTensors.at(i));
std::vector<uint16_t> hostData(atb::Utils::GetTensorNumel(inTensors.at(i)), 2); // 一段全2的hostBuffer
int ret = aclrtMalloc(&inTensors.at(i).deviceData, inTensors.at(i).dataSize, ACL_MEM_MALLOC_HUGE_FIRST); // 分配NPU内存
if (ret != 0) {
std::cout << "alloc error!";
exit(0);
}
ret = aclrtMemcpy(inTensors.at(i).deviceData, inTensors.at(i).dataSize, hostData.data(), hostData.size() * sizeof(uint16_t), ACL_MEMCPY_HOST_TO_DEVICE); //拷贝CPU内存到NPU侧
}
}
// 设置各个outtensor并且为outtensor分配内存空间,同intensor设置
void CreateOutTensors(atb::SVector<atb::Tensor> &outTensors, atb::SVector<atb::TensorDesc> &outtensorDescs)
{
for (size_t i = 0; i < outTensors.size(); i++) {
outTensors.at(i).desc = outtensorDescs.at(i);
outTensors.at(i).dataSize = atb::Utils::GetTensorSize(outTensors.at(i));
int ret = aclrtMalloc(&outTensors.at(i).deviceData, outTensors.at(i).dataSize, ACL_MEM_MALLOC_HUGE_FIRST);
if (ret != 0) {
std::cout << "alloc error!";
exit(0);
}
}
}
static uint64_t DIM3 = 3;
struct LlamaMlpParamGb {
bool transpose = true;
};
atb::Operation* Linear(const LlamaMlpParamGb ¶m)
{
atb::Operation* op = nullptr;
atb::infer::LinearParam linearParam;
linearParam.hasBias = false;
linearParam.transposeB = param.transpose;
CreateOperation(linearParam, &op);
return op;
}
atb::Operation* Split(const LlamaMlpParamGb ¶m)
{
atb::Operation* op = nullptr;
atb::infer::SplitParam splitParam = {2, 2};
CreateOperation(splitParam, &op);
return op;
}
atb::Operation* Swish(const LlamaMlpParamGb ¶m)
{
atb::Operation* op = nullptr;
atb::infer::ActivationParam activationParam;
activationParam.activationType = atb::infer::ActivationType::ACTIVATION_SWISH;
CreateOperation(activationParam, &op);
return op;
}
atb::Operation* Mul(const LlamaMlpParamGb ¶m)
{
atb::Operation* op = nullptr;
atb::infer::ElewiseParam elewiseParam;
elewiseParam.elewiseType = atb::infer::ElewiseParam::ElewiseType::ELEWISE_MUL;
CreateOperation(elewiseParam, &op);
return op;
}
atb::Status CreateLlamaMlpOperationByGraphOpBuilder(const LlamaMlpParamGb ¶m, atb::Operation **operation)
{
atb::InferShapeFunc inferShapeFunc = [=](const atb::SVector<atb::TensorDesc> &inTensorDescs,
atb::SVector<atb::TensorDesc> &outTensorDescs) {
outTensorDescs.at(0) = inTensorDescs.at(0);
if (param.transpose == true) {
outTensorDescs.at(0).shape.dimNum = DIM3;
outTensorDescs.at(0).shape.dims[0] = inTensorDescs.at(0).shape.dims[0];
outTensorDescs.at(0).shape.dims[1] = inTensorDescs.at(0).shape.dims[1];
outTensorDescs.at(0).shape.dims[2] = inTensorDescs.at(1).shape.dims[0] / 2;
} else {
outTensorDescs.at(0).shape.dimNum = DIM3;
outTensorDescs.at(0).shape.dims[0] = inTensorDescs.at(0).shape.dims[0];
outTensorDescs.at(0).shape.dims[1] = inTensorDescs.at(0).shape.dims[1];
outTensorDescs.at(0).shape.dims[2] = inTensorDescs.at(1).shape.dims[1] / 2;
}
return atb::NO_ERROR;
};
atb::ReshapeFunc reshape_01_2 = [](const atb::Dims &oldShape, atb::Dims &newShape) {
newShape.dimNum = 2; // dimNum: 2
newShape.dims[0] = oldShape.dims[0] * oldShape.dims[1];
newShape.dims[1] = oldShape.dims[1];
};
atb::ReshapeFunc unsqueueze_0 = [](const atb::Dims &oldShape, atb::Dims &newShape) {
newShape.dimNum = 3; // dimNum: 3
newShape.dims[0] = 1;
newShape.dims[1] = oldShape.dims[0];
newShape.dims[2] = oldShape.dims[1];
};
atb::GraphOpBuilder* graphOpBuilder;
CreateGraphOpBuilder(&graphOpBuilder);
graphOpBuilder->Init(
"LlamaMlpGraphOp",
inferShapeFunc,
{"hidden_states", "weight"},
{"mlp_out"}
);
graphOpBuilder->Reshape("hidden_states", reshape_01_2, "hidden_states_");
graphOpBuilder->AddOperation(Linear(param), {"hidden_states_", "weight"}, {"linear_out"});
graphOpBuilder->Reshape("linear_out", unsqueueze_0, "linear_out_");
graphOpBuilder->AddOperation(Split(param), {"linear_out_"}, {"gate_out", "up_out"});
graphOpBuilder->AddOperation(Swish(param), {"gate_out"}, {"swish_out"});
graphOpBuilder->AddOperation(Mul(param), {"swish_out", "up_out"}, {"mlp_out"});
*operation = graphOpBuilder->Build();
DestroyGraphOpBuilder(graphOpBuilder);
return atb::NO_ERROR;
}
void PrintOutTensorValue(atb::Tensor &outTensor)
{
// 输出Tensor拷贝回host侧并打印
std::vector<uint16_t> outBuffer(atb::Utils::GetTensorNumel(outTensor));
int ret = aclrtMemcpy(outBuffer.data(), outBuffer.size() * sizeof(uint16_t), outTensor.deviceData, outTensor.dataSize, ACL_MEMCPY_DEVICE_TO_HOST);
if (ret != 0) {
std::cout << "copy error!";
exit(0);
}
for (size_t i = 0; i < outBuffer.size(); i = i + 1) {
std::cout << "out[" << i << "] = " << (uint32_t)outBuffer.at(i) << std::endl;
}
}
int main() {
// step2:配置deviceId
uint32_t deviceId = 0;
aclError status = aclrtSetDevice(deviceId);
// step3:创建图算子对象实例
// 第一步:构造Operation参数
atb::Operation *op = nullptr;
::LlamaMlpParamGb opGraph;
// 第二步:创建opGraph
CreateLlamaMlpOperationByGraphOpBuilder(opGraph, &op);
// step4:创建输入输出tensor,并存入VariantPack
atb::VariantPack pack;
atb::SVector<atb::TensorDesc> intensorDescs;
atb::SVector<atb::TensorDesc> outtensorDescs;
uint32_t inTensorNum = op->GetInputNum();
uint32_t outTensorNum = op->GetOutputNum();
pack.inTensors.resize(inTensorNum);
intensorDescs.resize(inTensorNum);
CreateInTensorDescs(intensorDescs);
CreateInTensors(pack.inTensors, intensorDescs);
outtensorDescs.resize(outTensorNum);
pack.outTensors.resize(outTensorNum);
op->InferShape(intensorDescs, outtensorDescs);
CreateOutTensors(pack.outTensors, outtensorDescs);
// step5:创建context,配置stream
atb::Context *context = nullptr;
auto st = atb::CreateContext(&context);
aclrtStream stream = nullptr;
status = aclrtCreateStream(&stream);
context->SetExecuteStream(stream);
// step6:调用Setup接口,计算workspace大小
uint64_t workspaceSize = 0;
st = op->Setup(pack, workspaceSize, context);
// step7:根据workspace大小申请NPU内存
void *workspace = nullptr;
if (workspaceSize != 0) {
status = aclrtMalloc(&workspace, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
if (status != 0) {
std::cout << "alloc error!";
exit(0);
}
}
// step8:调用Execute接口,执行算子
st = op->Execute(pack, (uint8_t *)workspace, workspaceSize, context);
// step9:销毁创建的对象,释放内存
// 流同步,作用是等待device侧任务计算完成
auto ret = aclrtSynchronizeStream(stream);
if (ret != 0) {
std::cout << "sync error!";
exit(0);
}
// 打印输出Tensor的值
PrintOutTensorValue(pack.outTensors.at(0));
status = aclrtDestroyStream(stream); // 销毁stream
st = atb::DestroyOperation(op); // 销毁op对象
st = atb::DestroyContext(context); // 销毁context
// 销毁输入tensor
for (size_t i = 0; i < pack.inTensors.size(); i++) {
aclrtFree(pack.inTensors.at(i).deviceData);
}
// 销毁输出tensor
for (size_t i = 0; i < pack.outTensors.size(); i++) {
aclrtFree(pack.outTensors.at(i).deviceData);
}
status = aclrtFree(workspace); // 销毁workspace
aclrtResetDevice(deviceId); // 重置deviceId
return 0;
}
编译运行:
# g++编译demo工程,demo.cpp为demo对应的源码文件
g++ -I "${ATB_HOME_PATH}/include" -I "${ASCEND_HOME_PATH}/include" -L "${ATB_HOME_PATH}/lib" -L "${ASCEND_HOME_PATH}/lib64" atb_add_graph_by_tensor_name.cpp -l atb -l ascendcl -o atb_add_graph_by_tensor_name
# 运行可执行文件
./atb_add_graph_by_tensor_name
# 如果运行出现coredump,尝试在g++的编译命令中添加-D_GLIBCXX_USE_CXX11_ABI=0,也就是上述的编译命令为:
#g++ -D_GLIBCXX_USE_CXX11_ABI=0 -I "${ATB_HOME_PATH}/include" -I "${ASCEND_HOME_PATH}/include" -L "