不完美的iDEP分析程序折腾

折腾完fastqctrimmomaticsalmon后,开始折腾转录组差异化表达矩阵了。最主流最码农向的当然是直接用R跑DEseq2了,但是其实这两年又推出不少的在线分析工具。例如:
iDEP
BioJupies
networkanalyst
IRIS
对于模式植物或者人来说可能哪个都差不多,但是对于小众的植物可能支持最好的还是iDEP吧。毕竟在一开始你就能选择你需要的物种。


使用也很简单,首先设置好你的experiment design:

Study_design p53_mock_1 p53_mock_2 p53_mock_3 p53_IR_1 p53_IR_2 p53_IR_3
p53 wt wt wt wt wt wt
Treatment mock mock mock IR IR IR

然后用另一个txt填入你需要的数据:

Data Matrix p53_mock_1 p53_mock_2 p53_mock_3 p53_IR_1 p53_IR_2 p53_IR_3
ENSMUSG00000028995 3210 2553 2096 1054 663 1012
... ... ... ... ... ... ...
ENSMUSG00000093392 7 25 0 10 0 22

因为我使用的salmon默认有read counts data所以直接用第一个就好了。这个数据有助于后续筛选高表达基因基因ID。筛选过程你可以用excel读取txt或者csv做列操作,当然也能使用TBtools。如果你想学可以考虑这个66.66你买不了吃亏买不了上当。如果你对data format有兴趣可以读一下这个
剩下的操作在线平台都会帮你完成了……
最后附上iDEP的流程图……

iDEP工作流程图

故事到这里就该结束了,但其实还有更多值得折腾的东西。比如我们可以在自己的笔记本上跑iDEP!而这也是我接下来做的事情……经过两天的折腾,走了不少弯路(因为官方提供的教程已经过时了!)。现在把安装的过程分享在网络上。结果并不完美,原因最后会说。

1.把你的R和Rstudio版本升级到最新

  1. 运行这个脚本
# dplyr complains this required libraries: libudunits2-dev, libmariadb-client-lgpl-dev
# install.packages("plotly", repos="http://cran.rstudio.com/", dependencies=TRUE)
# sometimes need to remove all installed packages: https://www.r-bloggers.com/how-to-remove-all-user-installed-packages-in-r/ 
list.of.packages <- c(
  "shiny", "shinyAce", "shinyBS", "plotly",
  "RSQLite", "gplots", 
  "ggplot2", "dplyr", #"tidyverse",
  "plotly",
  "e1071", "reshape2", "DT",
  "data.table", "Rcpp","WGCNA","flashClust","statmod","biclust","igraph","Rtsne",
  "visNetwork", "BiocManager"
)

list.of.bio.packages  <- c(
  "limma", "DESeq2", "edgeR", "gage", "PGSEA", "fgsea", "ReactomePA", "pathview", "PREDA",
  "impute", "runibic","QUBIC","rhdf5", "STRINGdb",
  "PREDAsampledata", "sfsmisc", "lokern", "multtest", "hgu133plus2.db", 
   "org.Ag.eg.db","org.At.tair.db","org.Bt.eg.db","org.Ce.eg.db","org.Cf.eg.db",
   "org.Dm.eg.db","org.EcK12.eg.db","org.EcSakai.eg.db","org.Gg.eg.db",
   "org.Hs.eg.db","org.Mm.eg.db","org.Mmu.eg.db","org.Pf.plasmo.db",
   "org.Pt.eg.db","org.Rn.eg.db","org.Sc.sgd.db","org.Ss.eg.db","org.Xl.eg.db"
)

 if(1) { # remove all old packages, to solve problem caused by Bioconductor upgrade
    # create a list of all installed packages
     ip <- as.data.frame(installed.packages())
    # head(ip)
    # if you use MRO, make sure that no packages in this library will be removed
     ip <- subset(ip, !grepl("MRO", ip$LibPath))
    # we don't want to remove base or recommended packages either\
     ip <- ip[!(ip[,"Priority"] %in% c("base", "recommended")),]
    # determine the library where the packages are installed
     path.lib <- unique(ip$LibPath)
    # create a vector with all the names of the packages you want to remove
     pkgs.to.remove <- ip[,1]
    # head(pkgs.to.remove)
    # remove the packages
     sapply(pkgs.to.remove, remove.packages, lib = path.lib)
}

new.packages <- list.of.packages[!(list.of.packages %in% installed.packages()[,"Package"])]
new.bio.packages <- list.of.bio.packages[!(list.of.bio.packages %in% installed.packages()[,"Package"])]
notInstalledPackageCount = length(new.packages) + length(new.bio.packages)

#Install Require packages
while(notInstalledPackageCount != 0){

    if(length(new.packages)) install.packages(new.packages, repos="http://cran.rstudio.com/", dependencies=TRUE, quiet=TRUE)
    if(length(new.bio.packages)){
        BiocManager::install(new.bio.packages, ask = FALSE, dependencies=TRUE, quiet=TRUE)
    }

    new.packages <- list.of.packages[!(list.of.packages %in% installed.packages()[,"Package"])]
    new.bio.packages <- list.of.bio.packages[!(list.of.bio.packages %in% installed.packages()[,"Package"])]
    if( notInstalledPackageCount == length(new.packages) + length(new.bio.packages) )
    {
        #no new package installed.
        break
    }
    else {
       notInstalledPackageCount = length(new.packages) + length(new.bio.packages)
    }
}

#Load Packages
suc = unlist ( lapply(list.of.packages, require, character.only = TRUE) )
if(sum(suc) < length(list.of.packages) )
    cat ("\n\nWarnning!!!!!! These R packages cannot be loaded:", list.of.packages[!suc] )

suc = unlist ( lapply(list.of.bio.packages, require, character.only = TRUE) )
if(sum(suc) < length(list.of.bio.packages) )
    cat ("\n\nWarnning!!!!!! These Bioconductor packages cannot be loaded:", list.of.bio.packages[!suc] )

如果遇到问题,你可以根据提示手动重新安装一下你需要的bio包,具体方法为:

BiocManager::install("bio包的名字")
  1. 你需要找到iDEP的github,下载所有文件。
  2. 继续下载这几个文件pathwayDB, Motif, geneInfo, data_go, convertIDs
  3. 对于自己电脑上使用iDEP需要看shinyapps的位置。例如如果你的文件位置为:
    \idep\shinyapps
    你需要把之前下载的pathwayDB,Motif,geneInfo,data_go,convertIDs文件解压缩,并放在如下地址:
    \idep\data\data92\data_go
    \idep\data\data92\geneInfo
    \idep\data\data92\motif
    \idep\data\data92\pathwayDB
    \idep\data\data92\convertIDs.db
  4. 找到\idep\shinyapps\idep\STRING10_species.csv
    把该文件复制到\idep\data\data92\data_go下
  5. 此时如果你运行\idep\shinyapps\idep82下的
    server.R
    ui.R
    然后在rstudio里执行run app就可以了

整个过程并不完美因为最新的版本已经更新到了v0.92,支持了更多的物种也因此STRING10_species.csv升级为STRING11_species.csv,其他数据库也有了相应的更新。
但是作者并没有上传新的数据库文件,所以离线版本肯定没办法用最新的了。
如果你想折腾可以把
\idep\data\ data92
\idep\data\data92\data_go\STRING10_species.csv
改为
\idep\data\ data100
\idep\data\data100\data_go\STRING11_species.csv
就可以运行最新的v0.92版本了,但是结果并不完美。例如小麦转录组在online能正常运行,但是在离线版上提示找不到gene ID……查看数据库发现小麦使用的还是最早的TGAC数据……这个工程量就大了,只能等作者释出最新的数据库了。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,651评论 6 501
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,468评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,931评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,218评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,234评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,198评论 1 299
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,084评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,926评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,341评论 1 311
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,563评论 2 333
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,731评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,430评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,036评论 3 326
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,676评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,829评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,743评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,629评论 2 354