机器学习算法的优缺点
线性回归是用于回归的,而不像Logistic回归是用于分类,其基本思想是用梯度下降法对最小二乘法形式的误差函数进行优化,当然也可以用Normal Equation直接求得参数的解,结果为1:
ω^=(XTX)−1XTyω^=(XTX)−1XTy
而在LWLR(局部加权线性回归)中,参数的计算表达式为:
ω^=(XTWX)−1XTWyω^=(XTWX)−1XTWy
由此可见LWLR与LR不同,LWLR是一个非参数模型,因为每次进行回归计算都要遍历训练样本至少一次。
优点:
实现简单,计算简单;
缺点:
不能拟合非线性数据。
线性回归假设特征和结果满足线性关系。其实线性关系的表达能力非常强大,每个特征对结果的影响强弱可以由前面的参数体现,而且每个特征变量可以首先映射到一个函数,然后再参与线性计算。这样就可以表达特征与结果之间的非线性关系。
Logistic回归本质上是线性回归,只是在特征到结果的映射中加入了一层函数映射,即先把特征线性求和,然后使用函数g(z)g(z)将最为假设函数来预测。g(z)g(z)可以将连续值映射到0和1上。
其损失函数的目的是增加对分类影响较大的数据点的权重,减少与分类关系较小的数据点的权重2。
优点:
预测结果是界于0和1之间的概率;
可以适用于连续性和类别性自变量;
容易使用和解释;
缺点:
当特征空间很大时,逻辑回归的性能不是很好;
容易欠拟合,一般准确度不太高;
不能很好地处理大量多类特征或变量;
只能处理两分类问题(在此基础上衍生出来的Softmax可以用于多分类),且必须线性可分;
预测结果呈“S”型,因此从log(odds)log(odds)向概率转化的过程是非线性的,在两端随着log(odds)log(odds)值的变化,概率变化很小,边际值太小,slopeslope太小,而中间概率的变化很大,很敏感。 导致很多区间的变量变化对目标概率的影响没有区分度,无法确定阀值;
对于非线性特征,需要进行转换;
朴素贝叶斯属于生成式模型(关于生成模型和判别式模型,主要还是在于是否是要求联合分布),非常简单,你只是做了一堆计数。如果注有条件独立性假设(一个比较严格的条件),朴素贝叶斯分类器的收敛速度将快于判别模型,如逻辑回归,所以你只需要较少的训练数据即可。即使NB条件独立假设不成立,NB分类器在实践中仍然表现的很出色。它的主要缺点是它不能学习特征间的相互作用,用mRMR中R来讲,就是特征冗余。引用一个比较经典的例子,比如,虽然你喜欢BradPitt和TomCruise的电影,但是它不能学习出你不喜欢他们在一起演的电影。
优点:
朴素贝叶斯模型发源于古典数学理论,有着坚实的数学基础,以及稳定的分类效率;
对小规模的数据表现很好,能个处理多分类任务,适合增量式训练;
对缺失数据不太敏感,算法也比较简单,常用于文本分类。
缺点:
需要计算先验概率;
分类决策存在错误率;
对输入数据的表达形式很敏感。
其主要过程为:
计算训练样本和测试样本中每个样本点的距离(常见的距离度量有欧式距离,马氏距离等);
对上面所有的距离值进行排序;
选前kk个最小距离的样本;
根据这kk个样本的标签进行投票,得到最后的分类类别;
如何选择一个最佳的kk值,这取决于数据。一般情况下,在分类时较大的kk值能够减小噪声的影响。但会使类别之间的界限变得模糊。一个较好的kk值可通过各种启发式技术来获取,比如,交叉验证。另外噪声和非相关性特征向量的存在会使kk近邻算法的准确性减小。
近邻算法具有较强的一致性结果。随着数据趋于无限,算法保证错误率不会超过贝叶斯算法错误率的两倍。对于一些好的kk值,kk近邻保证错误率不会超过贝叶斯理论误差率。
优点:
理论成熟,思想简单,既可以用来做分类也可以用来做回归;
可用于非线性分类;
训练时间复杂度为O(n)O(n);
对数据没有假设,准确度高,对outlier不敏感;
缺点:
计算量大;
样本不平衡问题(即有些类别的样本数量很多,而其它样本的数量很少);
需要大量的内存。
易于解释。它可以毫无压力地处理特征间的交互关系并且是非参数化的,因此你不必担心异常值或者数据是否线性可分(举个例子,决策树能轻松处理好类别A在某个特征维度x的末端,类别B在中间,然后类别A又出现在特征维度x前端的情况)。它的缺点之一就是不支持在线学习,于是在新样本到来后,决策树需要全部重建。另一个缺点就是容易出现过拟合,但这也就是诸如随机森林RF(或提升树Boosted Tree)之类的集成方法的切入点。另外,随机森林经常是很多分类问题的赢家(通常比支持向量机好上那么一丁点),它训练快速并且可调,同时你无须担心要像支持向量机那样调一大堆参数,所以在以前都一直很受欢迎。
决策树中很重要的一点就是选择一个属性进行分枝,因此要注意一下信息增益的计算公式,并深入理解它。
优点:
计算简单,易于理解,可解释性强;
比较适合处理有缺失属性的样本;
能够处理不相关的特征;
在相对短的时间内能够对大型数据源做出可行且效果良好的结果。
缺点:
容易发生过拟合(随机森林可以很大程度上减少过拟合);
忽略了数据之间的相关性;
对于那些各类别样本数量不一致的数据,在决策树当中,信息增益的结果偏向于那些具有更多数值的特征(只要是使用了信息增益,都有这个缺点,如RF)。