ChIP-Seq数据挖掘系列-2: Motif 分析(2) - HOMER Motif 分析基本步骤

HOMER

在基因组调控元件分析中,HOMER 可以用于发现新的motif。HOMER 通过比较两个序列集,再使用ZOOPS scoring (zero or one occurrence per sequence)和超几何检验进行富集分析。HOMER主要被用于 ChIP-Seq 和 promoter 分析,但是核酸序列motif寻找问题都可以尝试使用HOMER。

HOMER预测Motif 需要的两个序列集

  1. 感兴趣的目标序列。例如Chipseq实验发现的peaks。
  2. 背景序列集。HOMER 分析结果也会根据背景基因集的选择不同而变化。

HOMER 分析基本步骤:
1. 预处理
1.1 提取序列 (findMotifs.pl/findMotifsGenome.pl)
提供的数据是基因组位置信息,就需要提取对应的DNA信息;提供基因号时,需要选择启动子区域。

1.2 背景选择 (findMotifs.pl/findMotifsGenome.pl)
未指定背景序列时,HOMER 会自动选择。
对基因组某些区域进行分析时,从基因组随机选择GC含量一致的序列作为背景序列。
对启动子进行分析时,除用来分析外的所有启动子将被作为背景。
自定义背景使用参数"-bg <file>"。

1.3 GC 标准化 (findMotifs.pl/findMotifsGenome.pl)
目标序列和背景序列会基于GC含量按5%作为bin 查看GC含量的分布。背景序列会得到权值,从而使得其GC含量分布与目标序列一致。
ChIP-Seq 实验得到序列GC含量。

GC bins HOMER

1.4 自动标准化 (New with v3.0, homer2/findMotifs.pl/findMotifsGenome.pl)
需要分析的序列除了GC含量会带来误差,其他的生物学现象,外显子中密码子偏好性或测序实验中偏好性都会影响分析。对于足够强的偏差,HOMER 会自动追踪目标序列和背景中显著差异的特征序列,并通过调整背景序列的权重来平衡输入数据和背景中短寡聚核酸序列不平衡。短寡聚核酸序列长度可以通过参数"-nlen <#>"指定。

autonormalization example

2. 重头预测Motifs (homer2)
默认情况下,HOMER 调用homer2 进行motif 分析;通过参数"-homer1" 可以指定老版本工具。

2.1 将输入序列解析为寡聚核苷酸序列
将输入序列按照motif 长度期望值解析为寡聚核苷酸序列,以及创建Oligo 数据表。Oligo 数据表中记录着每条oligo 在目标序列和背景中被发现的次数。

2.2 Oligo 自动标准化 (可选)
2.3 全局搜索阶段
Oligo 表格信息构建好之后,HOMER 对富集的Oligo 进行全局搜索。如果一个Motif是富集的,那么属于这个Motif的Oligo 也应该会富集。首先,HOMER 会搜索可能富集的Oligo 。HOMER 允许错配 ,使用参数"-mis <#>" 调节允许的错配数目。

2.3.1 Motif 富集分析
Motif 富集分析使用超几何分布和二项式分布。一般情况下,序列较多或者背景序列远远多于目标序列,二项式分布计算比较快,因此findMotifsGenome.pl默认使用二项式分布;当自定义背景序列时,这时序列较少,使用超几何检验比较好("-h")。findMotifs.pl用于启动子分析,并且默认使用超几何检验。

2.4 矩阵优化
2.5 Mask and Repeat
当最优oligo被优化成motif后,motif 对应的序列从要分析的数据中移除,接下来再分析最优的.....直到 25(默认值,"-S <#>")个motifs 被发现。

3. 计算已知Motifs是否富集 (homer2)
3.1 导入Motif库
为了搜索输入数据中已知Motifs ,HOMER 可以输入已知Motifs 数据,可以时HOMER 默认的 ("data/knownTFs/known.motifs"),也可以是自己构建("-mknown <file>") 。

3.2 筛选每一个Motif
对于每个motif,HOMER 计算丰度(包含motif的序列/background sequences), ZOOPS (zero or one occurence per sequence)计数以及使用超几何检验或二项式计算显著性。

4. Motif 分析结果
4.1 Motif Files (homer2, findMotifs.pl, findMotifsGenome.pl)
".motif"包含motifs的信息
"
.motif"文件格式:

>ASTTCCTCTT     1-ASTTCCTCTT    8.059752        -23791.535714   0       T:17311.0(44 ...
0.726   0.002   0.170   0.103
0.002   0.494   0.354   0.151
0.016   0.017   0.014   0.954
0.005   0.006   0.027   0.963
0.002   0.995   0.002   0.002
0.002   0.989   0.008   0.002
0.004   0.311   0.148   0.538
0.002   0.757   0.233   0.009
0.276   0.153   0.030   0.542
0.189   0.214   0.055   0.543

一个motif 的信息分为一块。motif 信息首行是motif 各种统计信息;其他行对应各个A/C/G/T的占比。
motif 信息首行解析:

  1. ">" + 序列 (可能是空白) example: >ASTTCCTCTT
  2. Motif 名字 example: 1-ASTTCCTCTT or NFkB
  3. 检测阈值对数值 example: 8.059752
  4. 富集P-value对数值 example: -23791.535714
  5. 0 用于老版本格式的占位符
  6. T:17311.0(44.36%),B:2181.5(5.80%),P:1e-10317
    1. T:#(%) - 包含motif的目标数据序列数除以目标数据序列总数
    2. B:#(%) - 包含motif的背景序列数除以背景序列总数
    3. P:# - 富集 p-value
  7. Motif statistics separated by commas, example: Tpos:100.7,Tstd:32.6,Bpos:100.1,Bstd:64.6,StrandBias:0.0,Multiplicity:1.13
    1. Tpos: average position of motif in target sequences (0 = start of sequences)
    2. Tstd: standard deviation of position in target sequences
    3. Bpos: average position of motif in background sequences (0 = start of sequences)
    4. Bstd: standard deviation of position in background sequences
    5. StrandBias: log ratio of + strand occurrences to - strand occurrences.
    6. Multiplicity: The averge number of occurrences per sequence in sequences with 1 or more binding site.

4.2 重头预测的 motif (findMotifs.pl/findMotifsGenome.pl/compareMotifs.pl)
首先会对motif进行去冗余,将每个motif 的概率矩阵转换为向量,求motif之间的Pearson 相关性。
HTML 结果:

motifs.denovoOutput.png

表格中,Best Match/Details项中:
More Information:与预测的motif相似的的已知motifs
Similar Motifs Found:与预测的motif相似的的其它预测motifs

4.2 已知 motif 的富集情况

motifs.known.png

参考:
Homer



ChIP-Seq 数据挖掘系列文章目录:
ChIP-Seq数据挖掘系列-1:Motif 分析(1)-HOMER 安装
ChIP-Seq数据挖掘系列-2: Motif 分析(2) - HOMER Motif 分析基本步骤
ChIP-Seq数据挖掘系列-3: Motif 分析(3) - 利用ChIP-Seq结果在基因组区域中寻找富集的Motifs
ChIP-Seq数据挖掘系列-4: liftOver - 基因组坐标在不同基因组注释版本间转换
ChIP-Seq数据挖掘系列-5.1: ngs.plot 可视化ChIP-Seq 数据
ChIP-Seq数据挖掘系列-5.2: ngs.plot 画图工具ngs.plot.r 和 replot.r 参数详解

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 195,653评论 5 462
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 82,321评论 2 373
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 142,833评论 0 324
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 52,472评论 1 266
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 61,306评论 4 357
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 46,274评论 1 273
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 36,658评论 3 385
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 35,335评论 0 254
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 39,638评论 1 293
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 34,697评论 2 312
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 36,454评论 1 326
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 32,311评论 3 313
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 37,699评论 3 299
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 28,986评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 30,254评论 1 251
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 41,647评论 2 342
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 40,847评论 2 335

推荐阅读更多精彩内容