JanusGraph---批量导入数据优化

批量导入配置项

storage.batch-loading =true
  • 导入的数据必须具有一致性并且和已存在的数据必须具有一致性。(比如:name数据是具有唯一索引(a unique composite index),那么导入的数据在name属性上上和已有的数据不能重复)

  • 下面是优化配置,优化的目的,就是减少批量导入时间。

ID 分配优化

ID Block Size

ids.block-size
  • 配置项,JanusGraph实例通过id池管理对象从id blocks中获取ids值为新加入的vertex、edge分配唯一id,为了保证库唯一性,所以获取id block(id块)是昂贵的(因为存在多个实例竞争),所以增加block-size可以减少获取block的次数,但是值过大会导致多余的id被浪费掉。
  • 一般情况下事务的负载,ids.block-size的默认值是满足要求的。但是对于批量导入时,需要调节值为每个JanusGraph实例需要添加节点和边数的10倍。
  • 该配置项在集群中所有实例上值必须唯一。

ID Acquisition Process

1) ids.authority.wait-time
  • 配置毫秒:id池管理器允许id block获取程序最大允许等待时间,时间到还未获取到就失败。建议值设置为存储后端第95%时读写时间之和。
  • 该配置在集群上要设置统一值。
2) ids.renew-timeout
  • 在失败获取id block后,id池管理程序等待多少毫秒后再次发起一个新的尝试。尽可能大。

读写优化

Buffer Size

storage.buffer-size  缓存大小
  • JanusGraph会缓存写操作,然后批量发送到后端执行。这样可以减少请求次数,从而避免短时间内执行服务器写请求过多导致的失败。
  • 如果缓存设置太大,会增加写延迟因此会增加执行失败的可能性。
  • 建议:谨慎设置该值。

Read and Write Robustness

  • 如果存储后端的写或读操作失败后(storage.buffer-size 太大会增加失败的可能性),将会重试多少次才会放弃。
storage.read-attempts   读尝试的次数
storage.write-attempts  写尝试次数
storage.attempt-wait  :两次尝试之间的时间间隔,在批量导入情况下,此值可以设置大一些

策略

Parallelizing the Load

  • 如果存储后端可以可承受足够的请求,那么可以在多个机器上并行批量导入,可以减少导入时间。
  • Chapter 35, JanusGraph with TinkerPop’s Hadoop-Gremlin 通过MapReduce批量导入数据。
  • 如果不使用Hadoop,则可以将大图拆分成小图并行导入。
  • 如果图不可以被拆分,那么可以将顶点和边分开并行导入。(具体看文档)
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,383评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,522评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,852评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,621评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,741评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,929评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,076评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,803评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,265评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,582评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,716评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,395评论 4 333
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,039评论 3 316
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,798评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,027评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,488评论 2 361
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,612评论 2 350

推荐阅读更多精彩内容

  • Spring Cloud为开发人员提供了快速构建分布式系统中一些常见模式的工具(例如配置管理,服务发现,断路器,智...
    卡卡罗2017阅读 134,637评论 18 139
  • 国家电网公司企业标准(Q/GDW)- 面向对象的用电信息数据交换协议 - 报批稿:20170802 前言: 排版 ...
    庭说阅读 10,934评论 6 13
  • 我的家乡是沧州市,沧州一个小小的城市却有很久远的历史。 扁鹊,马致远,纪晓岚,张之洞,冯国璋,马本斋,霍元甲等...
    心旷神怡_3f41阅读 684评论 0 1
  • 2016年11月23日我们相恋。仓促又急切。只知道彼此相互喜欢却不明白未来长远的在一起是任重而道远的事情。我们都记...
    静听细水长流阅读 826评论 8 0
  • 现在是大四上学期的下旬,是11月份的尾巴,是接近2018年的最后一个月,心里慌慌的,乱乱的,每天都为别人看来没所谓...
    阿敏的耳朵阅读 377评论 1 1