微服务下的一致性解决方案《一》

背景

随着微服务架构的推广,越来越多的公司采用微服务来搭建自己的业务平台,在微服务带来诸多好处的同时,也带来不少问题需要解决,首当其冲的就是分布式的数据一致性问题,也是本文主要探讨的问题。

在单体应用的时候可以借助数据库的事务来完成数据一致性的校验,最著名就是事务ACID特性。

  • 原子性(Atomic):事务中各项操作,要么全做要么全不做,任何一项操作的失败都会导致整个事务的失败;

  • 一致性(Consistent):事务结束后系统状态是一致的;

  • 隔离性(Isolated):并发执行的事务彼此无法看到对方的中间状态;

  • 持久性(Durable):事务完成后所做的改动都会被持久化,即使发生灾难性的失败。通过日志和同步备份可以在故障发生后重建数据。

具有ACID的数据库特性的数据库保证了数据的一致性。

在分布式中往往是每个服务都有自己的的数据库,不可能使用数据库的ACID特性来保证微服务中的数据一致性。

所以我们需要寻找保证在微服务下一致性的解决方案。

下面以电商为例,由于系统采用了未付的架构,系统划分为支付服务,订单服务,库存服务。每个服务都有自己的数据库,当用户支付成功之后,需要修改订单服务总的订单状态,并且通知仓库库存服务进行发货。

电商下单流程

在开始之前,我们先了解一下分布式中的两个理论。

  • CAP 理论
  • BASE理论

CAP 理论

CAP原则又称CAP定理,指的是在一个分布式系统中,Consistency(一致性)、 Availability(可用性)、Partition tolerance(分区容错性),三者不可得兼

分布式系统的CAP理论:理论首先把分布式系统中的三个特性进行了如下归纳:

  • 一致性(C):在分布式系统中的所有数据备份,在同一时刻是否同样的值。(等同于所有节点访问同一份最新的数据副本)
  • 可用性(A):在集群中一部分节点故障后,集群整体是否还能响应客户端的读写请求。(对数据更新具备高可用性)
  • 分区容错性(P):以实际效果而言,分区相当于对通信的时限要求。系统如果不能在时限内达成数据一致性,就意味着发生了分区的情况,必须就当前操作在C和A之间做出选择。

CAP理论就是说在分布式存储系统中,最多只能实现上面的两点。而由于当前的网络硬件肯定会出现延迟丢包等问题,所以分区容忍性是我们必须需要实现的。所以我们只能在一致性和可用性之间进行权衡。

所以系统在一定的时间内表现为数据不一致,但是通过自动或者手动补偿之后,达到最终的一致性。

BASE理论

BASE就是为了解决关系数据库强一致性引起的问题而引起的可用性降低而提出的解决方案

BASE是下面三个术语的缩写:

  • 基本可用(Basically Available)
  • 软状态(Soft state)
  • 最终一致(Eventually consistent)
    BASE 理论和ACID原则不同,满足CAP理论,牺牲强一致性来保证系统的高可用性。由于放弃了强一致性,在请求系统的时候,数据在短时间内可以不一致,但是一定要最终一致。

系统在处理业务的时候,保存每一步的的临时状态,当出现异常时,根据临时状态判断是否继续还是回滚到原始的状态。从而达到数据的一致。

比如上面的电商下单流程,支付成功了,订单状态也修改完成了,但是在通知仓库出货是失败了,这时候应该通过一些补偿的方式让仓库出货。

二阶段提交协议

X/Open DTP 模型( 1994 )包括应用程序( AP )、事务管理器( TM )、资源管理器( RM )、通信资源管理器( CRM )四部分。一般,常见的事务管理器( TM )是交易中间件,常见的资源管理器( RM )是数据库,常见的通信资源管理器( CRM )是消息中间件。 通常把一个数据库内部的事务处理,如对多个表的操作,作为本地事务看待。数据库的事务处理对象是本地事务,而分布式事务处理的对象是全局事务。 所谓全局事务,是指分布式事务处理环境中,多个数据库可能需要共同完成一个工作,这个工作即是一个全局事务,例如,一个事务中可能更新几个不同的数据库。对数据库的操作发生在系统的各处但必须全部被提交或回滚。此时一个数据库对自己内部所做操作的提交不仅依赖本身操作是否成功,还要依赖与全局事务相关的其它数据库的操作是否成功,如果任一数据库的任一操作失败,则参与此事务的所有数据库所做的所有操作都必须回滚。 一般情况下,某一数据库无法知道其它数据库在做什么,因此,在一个 DTP 环境中,交易中间件是必需的,由它通知和协调相关数据库的提交或回滚。而一个数据库只将其自己所做的操作(可恢复)影射到全局事务中。

XA 就是 X/Open DTP 定义的交易中间件与数据库之间的接口规范(即接口函数),交易中间件用它来通知数据库事务的开始、结束以及提交、回滚等。 XA 接口函数由数据库厂商提供。

二阶提交协议和三阶提交协议就是根据这一思想衍生出来的。可以说二阶段提交其实就是实现XA分布式事务的关键(确切地说:两阶段提交主要保证了分布式事务的原子性:即所有结点要么全做要么全不做)

2PC(二阶段提交)

二阶段提交(Two-phaseCommit)是指,在计算机网络以及数据库领域内,为了使基于分布式系统架构下的所有节点在进行事务提交时保持一致性而设计的一种算法(Algorithm)。通常,二阶段提交也被称为是一种协议(Protocol))。在分布式系统中,每个节点虽然可以知晓自己的操作时成功或者失败,却无法知道其他节点的操作的成功或失败。当一个事务跨越多个节点时,为了保持事务的ACID特性,需要引入一个作为协调者的组件来统一掌控所有节点(称作参与者)的操作结果并最终指示这些节点是否要把操作结果进行真正的提交(比如将更新后的数据写入磁盘等等)。因此,二阶段提交的算法思路可以概括为:参与者将操作成败通知协调者,再由协调者根据所有参与者的反馈情报决定各参与者是否要提交操作还是中止操作。

所谓的两个阶段是指:第一阶段:准备阶段(投票阶段)和第二阶段:提交阶段(执行阶段)

第一阶段 准备阶段

事务协调者(事务管理器)给每个参与者(资源管理器)发送Prepare消息,每个参与者要么直接返回失败(如权限验证失败),要么在本地执行事务,写本地的redo和undo日志,但不提交,到达一种“万事俱备,只欠东风”的状态

准备阶段

可以进一步将准备阶段分为以下三个步骤:(如图【准备阶段】)

  • 协调者节点向所有参与者节点询问是否可以执行提交操作(vote),并开始等待各参与者节点的响应。

  • 参与者节点执行询问发起为止的所有事务操作,并将Undo信息和Redo信息写入日志。(注意:若成功这里其实每个参与者已经执行了事务操作,一般只保留最后一步耗时最少的操作作为提交)

  • 各参与者节点响应协调者节点发起的询问。如果参与者节点的事务操作实际执行成功,则它返回一个”同意”消息;如果参与者节点的事务操作实际执行失败,则它返回一个”中止”消息。

第二阶段 (提交回滚阶段)

提交或者回滚

分为三个步骤:(如图【提交或者回滚】)

TM收到RM的消息是失败或者是超时时,直接给每一个RM发送Rollback消息,否则的话提交Commit消息。

RM根据TM的指令进行提交或者是回滚,执行完成后释放所有事务处理过程中使用的锁(最后阶段释放锁)

2PC优点

提供了一种完整的分布式事务解决方案,在一定程度上遵循事的ACID特性。

2PC缺点

  • 同步阻塞问题。执行过程中,所有参与节点都是事务阻塞型的。当参与者占有公共资源时,其他第三方节点访问公共资源不得不处于阻塞状态。

  • 单点故障。由于协调者的重要性,一旦协调者发生故障。参与者会一直阻塞下去。尤其在第二阶段,协调者发生故障,那么所有的参与者还都处于锁定事务资源的状态中,而无法继续完成事务操作。(如果是协调者挂掉,可以重新选举一个协调者,但是无法解决因为协调者宕机导致的参与者处于阻塞状态的问题)

  • 数据不一致。在二阶段提交的阶段二中,当协调者向参与者发送commit请求之后,发生了局部网络异常或者在发送commit请求过程中协调者发生了故障,这回导致只有一部分参与者接受到了commit请求。而在这部分参与者接到commit请求之后就会执行commit操作。但是其他部分未接到commit请求的机器则无法执行事务提交。于是整个分布式系统便出现了数据部一致性的现象。

  • 二阶段无法解决的问题:协调者再发出commit消息之后宕机,而唯一接收到这条消息的参与者同时也宕机了。那么即使协调者通过选举协议产生了新的协调者,这条事务的状态也是不确定的,没人知道事务是否被已经提交。

由于二阶段提交存在着诸如同步阻塞、单点问题、脑裂等缺陷,所以,研究者们在二阶段提交的基础上做了改进,提出了三阶段提交。

3PC 三阶段提交协议

三阶段提交(Three-phase commit),也叫三阶段提交协议(Three-phase commit protocol),是二阶段提交(2PC)的改进版本。

三阶段提交法

在第一阶段和第二阶段中插入一个准备阶段。保证了在最后提交阶段之前各参与节点的状态是一致的

CanCommit阶段

3PC的CanCommit阶段其实和2PC的准备阶段很像。协调者向参与者发送commit请求,参与者如果可以提交就返回Yes响应,否则返回No响应。

  • 事务询问 协调者向参与者发送CanCommit请求。询问是否可以执行事务提交操作。然后开始等待参与者的响应。

  • 响应反馈 参与者接到CanCommit请求之后,正常情况下,如果其自身认为可以顺利执行事务,则返回Yes响应,并进入预备状态。否则反馈No

PreCommit阶段

协调者根据参与者的反应情况来决定是否可以记性事务的PreCommit操作。根据响应情况,有以下两种可能。

假如协调者从所有的参与者获得的反馈都是Yes响应,那么就会执行事务的预执行。

1.发送预提交请求 协调者向参与者发送PreCommit请求,并进入Prepared阶段。

2.事务预提交 参与者接收到PreCommit请求后,会执行事务操作,并将undo和redo信息记录到事务日志中。

3.响应反馈 如果参与者成功的执行了事务操作,则返回ACK响应,同时开始等待最终指令。

假如有任何一个参与者向协调者发送了No响应,或者等待超时之后,协调者都没有接到参与者的响应,那么就执行事务的中断。

1.发送中断请求 协调者向所有参与者发送abort请求。

2.中断事务 参与者收到来自协调者的abort请求之后(或超时之后,仍未收到协调者的请求),执行事务的中断。

doCommit阶段

该阶段进行真正的事务提交,也可以分为以下两种情况。

  • 执行提交

1.发送提交请求 协调接收到参与者发送的ACK响应,那么他将从预提交状态进入到提交状态。并向所有参与者发送doCommit请求。

2.事务提交 参与者接收到doCommit请求之后,执行正式的事务提交。并在完成事务提交之后释放所有事务资源。

3.响应反馈 事务提交完之后,向协调者发送Ack响应。

4.完成事务 协调者接收到所有参与者的ack响应之后,完成事务。

  • 中断事务

协调者没有接收到参与者发送的ACK响应(可能是接受者发送的不是ACK响应,也可能响应超时),那么就会执行中断事务。

1.发送中断请求 协调者向所有参与者发送abort请求

2.事务回滚 参与者接收到abort请求之后,利用其在阶段二记录的undo信息来执行事务的回滚操作,并在完成回滚之后释放所有的事务资源。

3.反馈结果 参与者完成事务回滚之后,向协调者发送ACK消息

4.中断事务 协调者接收到参与者反馈的ACK消息之后,执行事务的中断。

在doCommit阶段,如果参与者无法及时接收到来自协调者的doCommit或者rebort请求时,会在等待超时之后,会继续进行事务的提交。(其实这个应该是基于概率来决定的,当进入第三阶段时,说明参与者在第二阶段已经收到了PreCommit请求,那么协调者产生PreCommit请求的前提条件是他在第二阶段开始之前,收到所有参与者的CanCommit响应都是Yes。(一旦参与者收到了PreCommit,意味他知道大家其实都同意修改了)所以,一句话概括就是,当进入第三阶段时,由于网络超时等原因,虽然参与者没有收到commit或者abort响应,但是他有理由相信:成功提交的几率很大。 )

相对于2PC,3PC主要解决的单点故障问题,并减少阻塞,因为一旦参与者无法及时收到来自协调者的信息之后,他会默认执行commit。而不会一直持有事务资源并处于阻塞状态。但是这种机制也会导致数据一致性问题,因为,由于网络原因,协调者发送的abort响应没有及时被参与者接收到,那么参与者在等待超时之后执行了commit操作。这样就和其他接到abort命令并执行回滚的参与者之间存在数据不一致的情况。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 211,884评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,347评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,435评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,509评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,611评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,837评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,987评论 3 408
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,730评论 0 267
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,194评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,525评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,664评论 1 340
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,334评论 4 330
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,944评论 3 313
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,764评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,997评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,389评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,554评论 2 349

推荐阅读更多精彩内容