走进Node.js 之 HTTP实现分析

上文“走进Node.js启动过程”中我们算是成功入门了。既然Node.js的强项是处理网络请求,那我们就来分析一个HTTP请求在Node.js中是怎么被处理的,以及JavaScript在这个过程中引入的开销到底有多大。

Node.js采用的网络请求处理模型是IO多路复用。它与传统的主从多线程并发模型是有区别的:只使用有限的线程数(1个),所以占用系统资源很少;操作系统级的异步IO支持,可以减少用户态/内核态切换,并且本身性能更高(因为直接与网卡驱动交互);JavaScript天生具有保护程序执行现场的能力(闭包),传统模型要么依赖应用程序自己保存现场,或者依赖线程切换时自动完成。当然,并不能说IO多路复用就是最好的并发模型,关键还是看应用场景。

我们来看“hello world”版Node.js网络服务器:

require('http').createServer((req, res) => {
    res.end('hello world');
}).listen(3333);

代码思路分析

createServer([requestListener])

createServer创建了http.Server对象,它继承自net.Server。事实上,HTTP协议确实是基于TCP协议实现的。createServer的可选参数requestListener用于监听request事件;另外,它也监听connection事件,只不过回调函数是http.Server自己实现的。然后调用listen让http.Server对象在端口3333上监听连接请求并最终创建TCP对象,由tcp_wrap.h实现。最后会调用TCP对象的listen方法,这才真正在指定端口开始提供服务。我们来看看涉及到的所有JavaScript对象:


class-diagram1.png

涉及到的C++类大多只是对libuv做了一层包装并公布给JavaScript,所以不在这里特别列出。我们有必要提一下http-parser,它是用来解析http请求/响应消息的,本身十分高效:没有任何系统调用,没有内存分配操作,纯C实现。

connection事件

当服务器接受了一个连接请求后,会触发connection事件。我们可以在这个结点获取到套接字文件描述符,之后就可以在这个文件描述符上做流式读或写,也就是所谓的全双工模式。上文提到net.Server的listen方法会创建TCP对象,并且提供TCP对象的onconnection事件回调方法;这里可以利用字段net.Server.maxConnections做过载保护,后面会讲到。并且会把clientHandle(本次连接的套接字文件描述符)封装成net.Socket对象,作为connection事件的参数。我们来看看调用过程:

tcp_wrap.cc

void TCPWrap::Listen(const FunctionCallbackInfo<Value>& args) {
  int err = uv_listen(reinterpret_cast<uv_stream_t*>(&wrap->handle_),
                      backlog,
                      OnConnection);
  args.GetReturnValue().Set(err);
}

OnConnectionconnection_wrap.cc中定义

    // ...省略不重要的代码
    uv_stream_t* client_handle =
        reinterpret_cast<uv_stream_t*>(&wrap->handle_);
    // uv_accept can fail if the new connection has already been closed, in
    // which case an EAGAIN (resource temporarily unavailable) will be
    // returned.
    if (uv_accept(handle, client_handle))
      return;

    // Successful accept. Call the onconnection callback in JavaScript land.
    argv[1] = client_obj;
  // ...省略不重要的代码
  wrap_data->MakeCallback(env->onconnection_string(), arraysize(argv), argv);

上文提到的clientHandle实际上是uv_accept的第二个参数,指服务当前连接的套接字文件描述符。net.Server的字段 _handle 会在JavaScript侧存储该字段。最后我们上一张流程图:

connection1.png

request事件

connection事件的回调函数connectionListener(lib/_http_server.js)中,首先获取http-parser对象,设置parser.onIncoming回调(马上会用到)。当连接套接字有数据到达时,调用http-parser.execute方法。http-parser在解析过程中会触发如下回调函数:

on_message_begin:在开始解析HTTP消息之前,可以设置http-parser的初始状态(注意http-parse有可能是复用的而不是重每次新创建)

on_url:解析请求的url,对响应消息不起作用

on_status, 解析状态码,只对http响应消息起作用

on_head_field, 头字段名称

on_head_value:头字段对应值

on_headers_complete:当所有头解析完成时

on_body:解析http消息中包含的payload

on_message_complete:解析工作结束

Node.js中Parser类是对http-parser的包装,它会注册上面所有的回调函数。同时,暴露给JavaScript5个事件:
kOnHeaders,kOnHeadersComplete,kOnBody,kOnMessageComplete,kOnExecute。在lib/_http_common.js中监听了这些事件。其中,当需要强制把头字段回传到JavaScript时会触发kOnHeaders;例如,头字段个数超过32,或者解析结束时仍然有头字段没有回传给JavaScript。当调用完http_parser_execute后触发kOnExecute。kOnHeadersComplete事件触发时,会调用parser的onIncoming回调函数。仅仅HTTP头解析完成之后,就会触发request事件。执行流程如下:

request1.png

总结

说了那么多,其实仍然离不开最基础的套接字编程步骤,对于服务器端依次是:create、bind,listen、accept和close。客户端会经历create、bind、connect和close。想了解更多套接字编程的同学可以参考《UNIX网络编程》。

HTTP场景分析

上面提到的Node.js版hello world只涵盖了HTTP处理最基本的情况,但是也足以说明Node.js处理得非常简洁。现在,我们来分析一些典型的HTTP场景。

1. keep-alive

对于前端应用,HTTP请求瞬间数量比较多,但每个请求传输的数据一般不大;这时,用同一个TCP连接处理同一个用户发出的HTTP请求可以显著提高性能。但是keep-alive也不是万能的,如果用户每次只发起一个请求,它反而会因为延长连接的生存时间,浪费服务器资源。

针对同一个连接,Node.js会维持一个incoming队列和一个outgoing队列。应用程序通过监听request事件,可以访问ServerResponse和IncomingMessage对象,当请求处理完成之后(调用response.end()),ServerResponse会响应finish事件。如果它是本次连接上最后一个response对象,则准备关闭连接;否则,继续触发request事件。每个连接最长超时时间默认为2分钟,可以通过http.Server.setTimeout调整。
现在把我们的Node.js版hello world修改一下

var delay = [2000, 30, 500];
var i = 0;
require('http').createServer((req, res) => {
    // 为了让请求模拟更真实,会调整每个请求的响应时间
    setTimeout(() => {
        res.end('hello world');
    }, delay[i]);
    i = (i+1)%(delay.length);
}).listen(3333, () => {
    // listen的回调函数
    console.log('listen at 3333');
});

客户端代码如下:

var http = require('http');

// 设置HTTP agent开启keep-alive模式
// 套接字的打开时间维持1分钟
var agent = new http.Agent({
    keepAlive: true,
    keepAliveMsecs: 60000
});

// 每次请求结束之后,都会再发起一次请求
// doReq每调用一次只会触发2次请求
function doReq(again, iter) {
    let request = http.request({
        hostname: '192.168.1.10',
        port: 3333,
        agent:agent
    }, (res) => {
        console.log(`${new Date().valueOf()} ${iter} ${again} Headers: ${JSON.stringify(res.headers)}`);
        console.log(request.socket.localPort);
        // 设置解析响应的编码格式
        res.setEncoding('utf8');
        // 接收响应
        res.on('data', (chunk) => {
            console.log(`${new Date().valueOf()} ${iter} ${again} Body: ${chunk}`);
        });
        if (again) doReq(false, iter);
    });
    // 发起请求
    request.end();
}

for (let i = 0; i < 3; i++) {
    doReq(true, i);
}

套接字复用的时序如下

keep-alive.png

2. Expect头

如果客户端在发送POST请求之前,由于传输的数据量比较大,期望向服务器确认请求是否能被处理;这种情况下,可以先发送一个包含头Expect:100-continue的http请求。如果服务器能处理此请求,则返回响应状态码100(Continue);否则,返回417(Expectation Failed)。默认情况下,Node.js会自动响应状态码100;同时,http.Server会触发事件checkContinue和checkExpectation来方便我们做特殊处理。具体规则是:当服务器收到头字段Expect时:如果其值为100-continue,会触发checkContinue事件,默认行为是返回100;如果值为其它,会触发checkExpectation事件,默认行为是返回417。

例如,我们通过curl发送HTTP请求:

curl -vs --header "Expect:100-continue" http://localhost:3333

交互过程如下

> GET / HTTP/1.1
> Host: localhost:3333
> User-Agent: curl/7.49.1
> Accept: */*
> Expect:100-continue
>
< HTTP/1.1 100 Continue
< HTTP/1.1 200 OK
< Date: Mon, 03 Apr 2017 14:15:47 GMT
< Connection: keep-alive
< Content-Length: 11
<

我们接收到2个响应,分别是状态码100和200。前一个是Node.js的默认行为,后一个是应用程序代码行为。

3. HTTP代理

在实际开发时,用到http代理的机会还是挺多的,比如,测试说线上出bug了,触屏版页面显示有问题;我们一般第一时间会去看api返回是否正常,这个时候在手机上设置好代理就能轻松捕获HTTP请求了。老牌的代理工具有fiddler,charles。其实,nodejs下也有,例如node-http-proxyanyproxy。基本思路是监听request事件,当客户端与代理建立HTTP连接之后,代理会向真正请求的服务器发起连接,然后把两个套接字的流绑在一起。我们可以实现一个简单的代理服务器:

var http = require('http');
var url = require('url');

http.createServer((req, res) => {
    // request回调函数
    console.log(`proxy request: ${req.url}`);
    var urlObj = url.parse(req.url);
    var options = {
        hostname: urlObj.hostname,
        port: urlObj.port || 80,
        path: urlObj.path,
        method: req.method,
        headers: req.headers
    };
    // 向目标服务器发起请求
    var proxyRequest = http.request(options, (proxyResponse) => {
        // 把目标服务器的响应返回给客户端
        res.writeHead(proxyResponse.statusCode, proxyResponse.headers);
        proxyResponse.pipe(res);
    }).on('error', () => {
        res.end();
    });
    // 把客户端请求数据转给中间人请求
    req.pipe(proxyRequest);
}).listen(8089, '0.0.0.0');

验证下是否真的起作用,curl通过代理服务器访问我们的“hello world”版Node.js服务器:

curl -x http://192.168.132.136:8089 http://localhost:3333/

优化策略

Node.js在实现HTTP服务器时,除了利用高性能的http-parser,自身也做了些性能优化。

1. http_parser对象缓存池

http-parser对象处理完一个请求之后不会被立即释放,而是被放入缓存池(/lib/internal/freelist),最多缓存1000个http-parser对象。

2. 预设HTTP头总数

HTTP协议规范并没有限定可以传输的HTTP头总数上限,http-parser为了避免动态分配内存,设定上限默认值是32。其他web服务器实现也有类似设置;例如,apache能处理的HTTP请求头默认上限(LimitRequestFields)是100。如果请求消息中头字段真超过了32个,Node.js也能处理,它会把已经解析的头字段通过事件kOnHeaders保存到JavaScript这边然后继续解析。 如果头字段不超过32个,http-parser会直接处理完并触发on_headers_complete一次性传递所有头字段;所以我们在利用Node.js作为web服务器时,应尽量把头字段控制在32个之内。

3. 过载保护

理论上,Node.js允许的同时连接数只与进程可以打开的文件描述符上限有关。但是随着连接数越来越多,占用的系统资源也越来越多,很有可能连正常的服务都无法保证,甚至可能拖垮整个系统。这时,我们可以设置http.Server的maxConnections,如果当前并发量大于服务器的处理能力,则服务器会自动关闭连接。另外,也可以设置socket的超时时间为可接受的最长响应时间。

性能实测

为了简单分析下Node.js引入的开销,现在基于libuv和http_parser编写一个纯C的HTTP服务器。基本思路是,在默认事件循环队列上监听指定TCP端口;如果该端口上有请求到达,会在队列上插入一个一个的任务;当这些任务被消费时,会执行connection_cb。见核心代码片段:

int main() {
    // 初始化uv事件循环
    loop = uv_default_loop();
    uv_tcp_t server;
    struct sockaddr_in addr;
    // 指定服务器监听地址与端口
    uv_ip4_addr("192.168.132.136", 3333, &addr);

    // 初始化TCP服务器,并与默认事件循环绑定
    uv_tcp_init(loop, &server);
    // 服务器端口绑定
    uv_tcp_bind(&server, (const struct sockaddr*)&addr, 0);
    // 指定连接处理回调函数connection_cb
    // 256为TCP等待队列长度
    int r = uv_listen((uv_stream_t*)&server, 256, connection_cb);

    // 开始处理默认时间循环上的消息
    // 如果TCP报错,事件循环也会自动退出
    return uv_run(loop, UV_RUN_DEFAULT);
}

connection_cb调用uv_accept会负责与发起请求的客户端实际建立套接字,并注册流操作回调函数read_cb:

void connection_cb(uv_stream_t* server, int status) {
    uv_tcp_t* client = (uv_tcp_t*)malloc(sizeof(uv_tcp_t));
    uv_tcp_init(loop, client);
    // 与客户端建立套接字
    uv_accept(server, (uv_stream_t*)client);
    uv_read_start((uv_stream_t*)client, alloc_buffer, read_cb);
}

上文中read_cb用于读取客户端请求数据,并发送响应数据:

void read_cb(uv_stream_t* stream, ssize_t nread, const uv_buf_t* buf) {
    if (nread > 0) {
        memcpy(reqBuf + bufEnd, buf->base, nread);
        bufEnd += nread;
        free(buf->base);
        // 验证TCP请求数据是否是合法的HTTP报文
        http_parser_execute(parser, &settings, reqBuf, bufEnd);
        uv_write_t* req = (uv_write_t*)malloc(sizeof(uv_write_t));
        uv_buf_t* response = malloc(sizeof(uv_buf_t));
        // 响应HTTP报文
        response->base = "HTTP/1.1 200 OK\r\nConnection:close\r\nContent-Length:11\r\n\r\nhello world\r\n\r\n";
        response->len = strlen(response->base);
        uv_write(req, stream, response, 1, write_cb);
    } else if (nread == UV_EOF) {
        uv_close((uv_handle_t*)stream, close_cb);
    }
}

全部源码请参见simple HTTP server。我们使用apache benchmark来做压力测试:并发数为5000,总请求数为100000。

ab -c 5000 -n 100000 http://192.168.132.136:3333/

测试结果如下: 0.8秒(C) vs  5秒(Node.js)

overview.png

我们再看看内存占用,0.6MB(C) vs  51MB(Node.js)

mem.png

Node.js虽然引入了一些开销,但是从代码实现行数上确实要简洁很多。

更多关于Node.js的技术内容,请关注沪江技术学院微信公众号。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,080评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,422评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,630评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,554评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,662评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,856评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,014评论 3 408
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,752评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,212评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,541评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,687评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,347评论 4 331
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,973评论 3 315
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,777评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,006评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,406评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,576评论 2 349

推荐阅读更多精彩内容