biostar handbook(四)|生物数据及其下载和基本操作

2017/11/9 第一版: 生物数据库,基本数据类型(genbank, fasta/fastq),数据上传站点
2017/11/12 第二版:如何利用esearch, efecth快速获取SRR序列号

生物数据库

目前绝大部分数据由NCBI, EMBL-EBI, DDBJ三大机构托管,可划分为五类:

(表格数据来源于INSDC

Data type DDBJ EMBL-EBI NCBI
Next generation reads Sequence Read Archive European NucleotideArchive (ENA) Sequence Read Archive
Capillary reads Trace Archive 同上 Trace Archive
Annotated sequences DDBJ 同上 GenBank
Samples BioSample 同上 BioSample
Studies BioProject 同上 BioProject

大部分所需要的数据可在如下站点进行搜索

  • GenBank: 存放所有注释和已被发现的DNA序列信息
  • SRA: 存放高通量测序产生的短读数据
  • PDB: 蛋白3D结构数据库
  • uniprot: 最权威的蛋白序列数据库
  • UCSC Genome Browser:脊椎动物相关数据库
  • FlyBase: 果蝇相关数据库
  • WornBase: 蠕虫相关数据库
  • SGD: 酵母相关数据库
  • RNA-Central: RNA相关资源汇总数据库
  • TAIR: 拟南芥相关数据库
  • EcoCyc: 大肠杆菌数据库
  • 待补充

常见数据格式

GenBank格式

目前测序数据最常储存的格式为GenBank, FASTA和 FASTQ。前两者经常表示策划的序列信息(curated sequence information)。FASTQ格式表示的是从测序仪器中获得的实验数据。

GenBank是最古老的生物信息数据,最早是用来搭建人类可读和机器高效利用之间的桥梁,格式称为固定宽度格式,前10个字符为标识,后面则是相应信息:

LOCUS       AF086833               18959 bp    cRNA    linear   VRL 13-FEB-2012
DEFINITION  Ebola virus - Mayinga, Zaire, 1976, complete genome.
ACCESSION   AF086833
VERSION     AF086833.2  GI:10141003
KEYWORDS    .
SOURCE      Ebola virus - Mayinga, Zaire, 1976 (EBOV-May)
  ORGANISM  Ebola virus - Mayinga, Zaire, 1976
            Viruses; ssRNA viruses; ssRNA negative-strand viruses;
            Mononegavirales; Filoviridae; Ebolavirus.
REFERENCE   1  (bases 1 to 18959)
  AUTHORS   Bukreyev,A.A., Volchkov,V.E., Blinov,V.M. and Netesov,S.V.
  TITLE     The VP35 and VP40 proteins of filoviruses. Homology between Marburg
            and Ebola viruses
  JOURNAL   FEBS Lett. 322 (1), 41-46 (1993)
   PUBMED   8482365
REFERENCE   2  (bases 1 to 18959)
  AUTHORS   Volchkov,V.E., Becker,S., Volchkova,V.A., Ternovoj,V.A.,
            Kotov,A.N., Netesov,S.V. and Klenk,H.D.
  TITLE     GP mRNA of Ebola virus is edited by the Ebola virus polymerase and
            by T7 and vaccinia virus polymerases

GenBank格式的优势在于可读,但是对于数据分析而言不太合适,ReadSeq 可以将将GenBank格式转换为比较简单的版本。
RefSeq,The NCBI Reference Sequence,项目提供了大多数生物的序列记录和相应的信息,为医学,功能和比较分析提供了基准线。

refseq

FASTA格式

定义:第一行为>开头,表示为fasta记录开始,随后紧跟序列
问题: 缺乏定义,过于简单
注意:

  1. 序列行不应太长,
  2. 不同工具对序列行中的超出字符集(核酸ATCG或蛋白质20种)处理不同
  3. 序列行如果有多行,除最后一行,前几行应该是等宽的
  4. 使用大写字母。不同工具会有大小写敏感。如有些工具会认为小写字母是非重复,大写字母象征着重复区域。
  5. 不同机构对>后面的结构有各自的定义
fasta format

小写字母可能表示重复区,但是目前还是很难判断哪些是重复区。
lastz默认过滤小写字母(重复区)

FASTQ格式

FASTQ可以算是FASTA的增加碱基质量版本,很久之前是单行表示所有数据,目前是通过4行进行表示,形如:

@SEQ_ID
GATTTGGGGTTCAAAGCAGTATCGATCAAATAGTAAATCCATTTGTTCAACTCACAGTTT
+
!''*((((***+))%%%++)(%%%%).1***-+*''))**55CCF>>>>>>CCCCCCC65

其中第四行是描述碱基质量,通常可以按照如下这样认为

!"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHI
|    |    |    |    |    |    |    |    | 
0....5...10...15...20...25...30...35...40
|    |    |    |    |    |    |    |    |
worst................................best

:

  1. 目前有许多中FASTQ质量编码版本:有+33, +64两类。以!为0的是,+33,以@开头的是+64
  2. FASTQ开头的定义也有多个版本见维基百科

FATA/Q 格式操作

为了更好的熟悉FASTA/Q,最好的的方法就是用SeqKit对他们进行一波处理,一探究竟。

# 安装软件
conda install seqkit # for linux
brew install seqkit # for mac
# 下载数据
wget http://data.biostarhandbook.com/reads/duplicated-reads.fq.gz
wget ftp://ftp.ncbi.nih.gov/refseq/release/viral/viral.1.1.genomic.fna.gz
wget ftp://ftp.ncbi.nih.gov/refseq/release/viral/viral.1.protein.faa.gz

我们用seqkit解决如下问题:

  • 了解概况
$ seqkit stat *.gz
file                      format  type     num_seqs      sum_len  min_len  avg_len    max_len
duplicated-reads.fq.gz    FASTQ   DNA        15,000    1,515,000      101      101        101
viral.1.1.genomic.fna.gz  FASTA   DNA         8,557  212,624,336      200   24,848  2,473,870
viral.1.protein.faa.gz    FASTA   Protein   253,637   64,758,934        5    255.3      8,960
  • GC含量
seqkit fx2tab --name --only-id --gc viral.1.*fna.gz | head -n 1
NC_021865.1                     40.94
  • 获取子集, 抽样
# 随机获取id
seqkit sample --proportion 0.001 duplicated-reads.fq.gz | seqkit seq --only-id --name > id.txt
# 根据ID获取序列
seqkit grep --pattern-file id.txt duplicated-reads.fq.gz > duplicated-reads.subset.fq

官方列举出更多的用法,这里不一一赘述, 详见http://bioinf.shenwei.me/seqkit/

自动化数据下载

这里的自动化意味着不经由浏览器查找数据,而是利用命令行根据物种名或者项目号解析下载链接并获取相关数据的过程。

数据下载

所谓“巧妇难为无米之炊”,在数据分析之前得要保证要有数据。 绝大部分的数据,如参考基因组,高通量测序结果可以在如下网站获取

下载SRA数据

当然目前最常接触的数据是二代测序数据。随着测序价格下降,大家动不动就来一波高通量测序,然后为了可重复就需要把数据上传到专门的服务器。NCBI为了管理这些数据,就专门搞了Short Read Archive,还专门搞出了一个SRA格式用于压缩数据,当然这个SRA格式被吐槽的很惨。这个项目本身的组织方式还是非常棒的

  • NCBI BioProject: 以PRJN开头,例如PRJNA257197,通常是一个研究项目的介绍
  • NCBI BioSample: 以SAMN/SRS开头, 通常是介绍材料的来源
  • SRA Experiment: 以SRX开头, 一个特定样本的单独的测序文库
  • SRA Run: 以SRR/ERR开头,只有这个才真正存放数据,只有之中序列号才能用于下载。

给定一个ID, 就可以在https://www.ncbi.nlm.nih.gov/srahttps://www.ebi.ac.uk/ena进行检索,然后用SRAtoolkit或者是curl进行下载。

SRAtoolkit下载的数据来自于NCBI,需要进一步用fastq-dump解压缩。如果不想解压缩的话,就去EBI里进行检索,这里面的数据仅仅经过gzip压缩,下载后直接可以分析。

举个例子,比如说我拿到了一个项目号SRP113349, 我先去NCBI的SRA中进行检索,得到如下子结果。

SRA检索结果

为了获得SRR序列号,我根据需求选择了第一个,并且找到了目标序列号SRR5860104

其中一个项目介绍

可以直接用sratoolkit的prefetch进行下载。

数据下载

既然我们只需要得到SRR开头的序列号,其实完全没有必要去打开网页一个个翻查,一点都不geek.

使用Entrez检索NCBI

目前NCBI提供了数据存储,分类以及几乎所有生命科学相关的信息。为了便于管理这些数据,NCBI使用了Entrez作为其主要的文本检索和提取工具,用于搞定文献,DNA,蛋白,基因组,基因变异等信息检索。NCBI为了方便用户使用,开放了专门的API,并且为这个API还做了一个命令行工具,叫做Entrez Direct,安装方法如下

#通用方法
cd ~
/bin/bash
perl -MNet::FTP -e \
  '$ftp = new Net::FTP("ftp.ncbi.nlm.nih.gov", Passive => 1);
   $ftp->login; $ftp->binary;
   $ftp->get("/entrez/entrezdirect/edirect.tar.gz");'
gunzip -c edirect.tar.gz | tar xf -
rm edirect.tar.gzbuiltin exit export PATH=$PATH:$HOME/edirect >& /dev/null || setenv PATH "${PATH}:$HOME/edirect"
./edirect/setup.sh 
echo "export PATH=\$PATH:\$HOME/edirect" >> $HOME/.bash_profile
# Mac OS
brew install edirect
# conda
conda install entrez-direct

一共提供了8个命令

  • esearch : 给定词条(term)对某一个数据库进行检索
  • elink: 在esarch的前提下,找到其他相关数据
  • efilter: 对之前的结果进行过滤
  • efetch : 按照给定的格式下载数据
  • xtract : 将XML转变成表格格式
  • einfo : 获取
  • epost: 上传数据
  • nquire: 向网页或CGI服务器发送URL请求

具体的使用方法见 Entrez Direct: E-utilities on the UNIX Command Line, 提供了详细的实例。这里介绍如何使用esearch根据文章上传的项目获取下载所需的SRR号。

esearch -db sra -query SRP113349
# 结果显示有8个结果, 可以通过efetch获取这个8个结果,保存为CSV
esearch -db sra -query SRP113349 | efetch -format runinfo > info.csv
# CSV 的第一列就是SRR
cat info.csv | cut -d ',' -f 1 | head -n 5
# 结合xargs直接完成所有数据下载
cat info.csv | cut -d ',' -f 1 | xargs -i prefetch {}

从此又降低打开网页的必要性,不需要点击那么多下,直接搞定所有项目数据下载。

数据上传

目前还未涉及到上传数据,仅仅列出不同数据上传对应的网站:

  • Sequence Read Archive (SRA)
  • Gene Expression Omnibus (GEO)
  • Database of Short Genetic Variations (dbSNP)
  • Database of Genomic Structural Variations (dbVar)
  • Database of Expressed Sequence Tags (dbEST)
  • Transcriptome Shotgun Assembly Sequence Database (TSA)
  • Whole Genome Shotgun Submissions (WGS)
  • Metagenomes
  • GenBank
  • Genomes

简而言之:高通量测序结果上传SRA,功能基因组学数据如RNA-SEQ,CHIP-SEQ上传GEO,变异特异性数据上传dbSNP,转录本组装结果为TSA,其他可以传到GenBank等

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,539评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,911评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,337评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,723评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,795评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,762评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,742评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,508评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,954评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,247评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,404评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,104评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,736评论 3 324
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,352评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,557评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,371评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,292评论 2 352

推荐阅读更多精彩内容