官方docs: http://pytorch.org/docs/master/
中文版docs: http://pytorch-cn.readthedocs.io/zh/latest/
最近在看廖星宇写的<<深度学习入门之pytorch>>,发现了一些问题(可能是版本问题),在这边总结一下:
书中代码地址https://github.com/SherlockLiao/code-of-learn-deep-learning-with-pytorch/tree/master/
本文代码地址https://github.com/qianhaoq/pytorch_test
一.第三章线性回归的代码实现中,3.2.4章代码实现的问题
在该章中, 原文把模型放在cuda上采用了如下代码:
if torch.cuda.is_available():
model = LinearRegression().cuda()
else:
model = LinearRegression()
本来很好理解,就是cuda可用时就把模型放在cuda上运行,整个程序写下来,在torch.cuda.is_available()为false的情况下是可运行的,但在cuda为avaliable的时候,会报如下错误:
Epoch[920/1000], loss:0.169177
Epoch[940/1000], loss:0.169152
Epoch[960/1000], loss:0.169129
Epoch[980/1000], loss:0.169108
Epoch[1000/1000], loss:0.169089
Traceback (most recent call last):
File "linear.py", line 93, in <module>
predict = model(Variable(x_train))
File "/home/qh/anaconda3/lib/python3.6/site-packages/torch/nn/modules/module.py", line 224, in __call__
result = self.forward(*input, **kwargs)
File "linear.py", line 37, in forward
out = self.linear(x)
File "/home/qh/anaconda3/lib/python3.6/site-packages/torch/nn/modules/module.py", line 224, in __call__
result = self.forward(*input, **kwargs)
File "/home/qh/anaconda3/lib/python3.6/site-packages/torch/nn/modules/linear.py", line 53, in forward
return F.linear(input, self.weight, self.bias)
File "/home/qh/anaconda3/lib/python3.6/site-packages/torch/nn/functional.py", line 553, in linear
return torch.addmm(bias, input, weight.t())
File "/home/qh/anaconda3/lib/python3.6/site-packages/torch/autograd/variable.py", line 924, in addmm
return cls._blas(Addmm, args, False)
File "/home/qh/anaconda3/lib/python3.6/site-packages/torch/autograd/variable.py", line 920, in _blas
return cls.apply(*(tensors + (alpha, beta, inplace)))
File "/home/qh/anaconda3/lib/python3.6/site-packages/torch/autograd/_functions/blas.py", line 26, in forward
matrix1, matrix2, out=output)
TypeError: torch.addmm received an invalid combination of arguments - got (int, torch.cuda.FloatTensor, int, torch.FloatTensor, torch.cuda.FloatTensor, out=torch.cuda.FloatTensor), but expected one of:
* (torch.cuda.FloatTensor source, torch.cuda.FloatTensor mat1, torch.cuda.FloatTensor mat2, *, torch.cuda.FloatTensor out)
* (torch.cuda.FloatTensor source, torch.cuda.sparse.FloatTensor mat1, torch.cuda.FloatTensor mat2, *, torch.cuda.FloatTensor out)
* (float beta, torch.cuda.FloatTensor source, torch.cuda.FloatTensor mat1, torch.cuda.FloatTensor mat2, *, torch.cuda.FloatTensor out)
* (torch.cuda.FloatTensor source, float alpha, torch.cuda.FloatTensor mat1, torch.cuda.FloatTensor mat2, *, torch.cuda.FloatTensor out)
* (float beta, torch.cuda.FloatTensor source, torch.cuda.sparse.FloatTensor mat1, torch.cuda.FloatTensor mat2, *, torch.cuda.FloatTensor out)
* (torch.cuda.FloatTensor source, float alpha, torch.cuda.sparse.FloatTensor mat1, torch.cuda.FloatTensor mat2, *, torch.cuda.FloatTensor out)
* (float beta, torch.cuda.FloatTensor source, float alpha, torch.cuda.FloatTensor mat1, torch.cuda.FloatTensor mat2, *, torch.cuda.FloatTensor out)
didn't match because some of the arguments have invalid types: (int, torch.cuda.FloatTensor, int, torch.FloatTensor, torch.cuda.FloatTensor, out=torch.cuda.FloatTensor)
* (float beta, torch.cuda.FloatTensor source, float alpha, torch.cuda.sparse.FloatTensor mat1, torch.cuda.FloatTensor mat2, *, torch.cuda.FloatTensor out)
didn't match because some of the arguments have invalid types: (int, torch.cuda.FloatTensor, int, torch.FloatTensor, torch.cuda.FloatTensor, out=torch.cuda.FloatTensor)
可以看到是预测模型这块的问题,在底层的数据类型不匹配造成的,我尝试过通过 tensor.cpu()等方法强制使用cpu()来处理,但这样也是去了利用gpu计算的优势,在pytorch的官方github的issus上有人提过类似的问题,地址如下:
https://github.com/pytorch/pytorch/issues/1472
里面有人提出了一个解决方案,即使用
model = LinearRegression()
model = torch.nn.DataParallel(model).cuda()
代替
model = LinearRegression().cuda()
问题解决
二. 关于pytorch中 torch.squeeze和torch.unsqueeze的使用说明
刚接触这一块的时候不太了解这2个函数的作用以及使用方法,查阅了官方docs后大致了解掌握,在此记录下:
torch.squeeze(input, dim=None, out=None)
Returns a Tensor with all the dimensions of input of size 1 removed.
默认是去掉所有维度中维度大小为1的维度并返回
若指定了dim(从0开始),则判断该维度大小是否为1,若为1则去掉
examples
torch.unsqueeze(input, dim, out=None)
Returns a new tensor with a dimension of size one inserted at the specified position.
在指定位置插入一个1维tensor
examples