numpy_基础运算1

本文介绍一些numpy的基础运算


Demo.py

#对一维数组进行操作
import numpy as np
a=np.array([10,20,30,40])   # array([10, 20, 30, 40])
b=np.arange(4)              # array([0, 1, 2, 3])

c=a-b  # array([10, 19, 28, 37])
print c
c=a+b   # array([10, 21, 32, 43])
print c
c=a*b   # array([  0,  20,  60, 120])
print c
c=b**2  # array([0, 1, 4, 9])
print c
c=10*np.sin(a)  
print c

print b<3 
# array([ True,  True,  True, False], dtype=bool)

#对多维数组进行操作


#关于 sum(), min(), max()的使用
import numpy as np
a=np.random.random((2,4))
#对a的操作是令a中生成一个2行4列的矩阵,且每一元素均是来自从0到1的随机数
#print a
# array([[ 0.94692159,  0.20821798,  0.35339414,  0.2805278 ],
#       [ 0.04836775,  0.04023552,  0.44091941,  0.21665268]])
print np.sum(a)   # 4.4043622002745959
print np.min(a)   # 0.23651223533671784
print np.max(a)   # 0.90438450240606416

#如果你需要对行或者列进行查找运算,就需要在上述代码中为 axis 进行赋值。

print "a =",a
# a = [[ 0.23651224  0.41900661  0.84869417  0.46456022]
# [ 0.60771087  0.9043845   0.36603285  0.55746074]]

print "sum =",np.sum(a,axis=1)#当axis的值为1的时候,将会以行作为查找单元。
# sum = [ 1.96877324  2.43558896]

print "min =",np.min(a,axis=0)#当axis的值为0的时候,将会以列作为查找单元
# min = [ 0.23651224  0.41900661  0.36603285  0.46456022]

print "max =",np.max(a,axis=1)
# max = [ 0.84869417  0.9043845 ]

结果:

[10 19 28 37]
[10 21 32 43]
[  0  20  60 120]
[0 1 4 9]
[-5.44021111  9.12945251 -9.88031624  7.4511316 ]
[ True  True  True False]

[[1 1]
 [0 1]]
[[0 1]
 [2 3]]
[[2 4]
 [2 3]]
[[2 4]
 [2 3]]

4.86697754129
0.392121318071
0.95110386776
a = [[ 0.57126351  0.95110387  0.73275929  0.39212132]
 [ 0.64227461  0.5118515   0.40201937  0.66358408]]
sum = [ 2.64724798  2.21972956]
min = [ 0.57126351  0.5118515   0.40201937  0.39212132]
max = [ 0.95110387  0.66358408]

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 211,123评论 6 490
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,031评论 2 384
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 156,723评论 0 345
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,357评论 1 283
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,412评论 5 384
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,760评论 1 289
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,904评论 3 405
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,672评论 0 266
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,118评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,456评论 2 325
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,599评论 1 340
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,264评论 4 328
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,857评论 3 312
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,731评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,956评论 1 264
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,286评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,465评论 2 348

推荐阅读更多精彩内容