1.首先创造数据,数据有4列分别是店铺id、订单id、订单金额、订单日期。
spark.createDataFrame(Seq(
("1","11",10,"2023-01-01"),
("1","22",20,"2023-01-02"),
("1","33",10,"2023-02-28"),
("1","44",30,"2023-03-02"),
("1","55",10,"2023-05-02"),
("1","55",20,"2023-06-02"),
("1","11",10,"2022-01-01"),
("1","22",20,"2022-01-02"),
("1","33",10,"2022-02-28"),
("1","44",30,"2022-03-02"),
("1","55",10,"2022-05-02"),
("1","55",20,"2022-06-02"),
("11","11",10,"2023-01-01"),
("11","22",30,"2023-01-02"),
("11","33",10,"2023-02-28"),
("11","44",20,"2023-03-02"),
("11","55",10,"2023-05-02"),
("11","55",30,"2023-06-02"),
("11","11",10,"2022-01-01"),
("11","22",20,"2022-01-02"),
("11","33",10,"2022-02-28"),
("11","44",30,"2022-03-02"),
("11","55",20,"2022-05-02"),
("11","55",30,"2022-06-02")
)).toDF("shop_id","order_id","amount","event_day").createOrReplaceTempView("t1")
数据如下:
+-------+--------+------+----------+
|shop_id|order_id|amount| event_day|
+-------+--------+------+----------+
| 1| 11| 10|2023-01-01|
| 1| 22| 20|2023-01-02|
| 1| 33| 10|2023-02-28|
| 1| 44| 30|2023-03-02|
| 1| 55| 10|2023-05-02|
| 1| 55| 20|2023-06-02|
| 1| 11| 10|2022-01-01|
| 1| 22| 20|2022-01-02|
| 1| 33| 10|2022-02-28|
| 1| 44| 30|2022-03-02|
| 1| 55| 10|2022-05-02|
| 1| 55| 20|2022-06-02|
| 11| 11| 10|2023-01-01|
| 11| 22| 30|2023-01-02|
| 11| 33| 10|2023-02-28|
| 11| 44| 20|2023-03-02|
| 11| 55| 10|2023-05-02|
| 11| 55| 30|2023-06-02|
| 11| 11| 10|2022-01-01|
| 11| 22| 20|2022-01-02|
+-------+--------+------+----------+
2.计算月销售额占比
通过窗口函数实现,首先聚合月销售额,之后再根据月销售额集合为年销售额,最后计算占比即可。
spark.sql(
s"""
|select
|shop_id,
|month,
|year,
|m_amount,
|y_amount,
|round(m_amount/y_amount,4) ratio
|from
|(
|select
|shop_id,
|month,
|m_amount,
|date_format(month,'yyyy') year,
|sum(m_amount) over(partition by date_format(month,'yyyy')) y_amount
|from
|(
|select
|shop_id,
|date_format(event_day,'yyyy-MM') month,
|sum(amount) m_amount
|from t1 group by shop_id,date_format(event_day,'yyyy-MM')
|) a) aa order by shop_id,month
|""".stripMargin).show()
结果
+-------+-------+----+--------+--------+------+
|shop_id| month|year|m_amount|y_amount| ratio|
+-------+-------+----+--------+--------+------+
| 1|2022-01|2022| 30| 220|0.1364|
| 1|2022-02|2022| 10| 220|0.0455|
| 1|2022-03|2022| 30| 220|0.1364|
| 1|2022-05|2022| 10| 220|0.0455|
| 1|2022-06|2022| 20| 220|0.0909|
| 1|2023-01|2023| 30| 210|0.1429|
| 1|2023-02|2023| 10| 210|0.0476|
| 1|2023-03|2023| 30| 210|0.1429|
| 1|2023-05|2023| 10| 210|0.0476|
| 1|2023-06|2023| 20| 210|0.0952|
| 11|2022-01|2022| 30| 220|0.1364|
| 11|2022-02|2022| 10| 220|0.0455|
| 11|2022-03|2022| 30| 220|0.1364|
| 11|2022-05|2022| 20| 220|0.0909|
| 11|2022-06|2022| 30| 220|0.1364|
| 11|2023-01|2023| 40| 210|0.1905|
| 11|2023-02|2023| 10| 210|0.0476|
| 11|2023-03|2023| 20| 210|0.0952|
| 11|2023-05|2023| 10| 210|0.0476|
| 11|2023-06|2023| 30| 210|0.1429|
+-------+-------+----+--------+--------+------+
3.计算月环比
月环比计算公式=(本月-上月)/上月
为了方便说明分几步进行:
3.1 聚合本月数据(为了方便查看进行了order by正常不用的)
spark.sql(
s"""
|select
|shop_id,
|date_format(event_day,'yyyy-MM') event_day,
|sum(amount) amount
|from t1 group by shop_id,date_format(event_day,'yyyy-MM') order by date_format(event_day,'yyyy-MM')
|""".stripMargin).createOrReplaceTempView("t2")
输出结果
+-------+---------+------+
|shop_id|event_day|amount|
+-------+---------+------+
| 1| 2022-01| 30|
| 1| 2022-02| 10|
| 1| 2022-03| 30|
| 1| 2022-05| 10|
| 1| 2022-06| 20|
| 1| 2023-01| 30|
| 1| 2023-02| 10|
| 1| 2023-03| 30|
| 1| 2023-05| 10|
| 1| 2023-06| 20|
| 11| 2022-01| 30|
| 11| 2022-02| 10|
| 11| 2022-03| 30|
| 11| 2022-05| 20|
| 11| 2022-06| 30|
| 11| 2023-01| 40|
| 11| 2023-02| 10|
| 11| 2023-03| 20|
| 11| 2023-05| 10|
| 11| 2023-06| 30|
+-------+---------+------+
3.2 聚合上个月的数据
因为我们计算月环比需要上个月的销售额,例如,2022-02需要2022-01月的销售额才能计算2022-02的月环比,即(2022-02销售额-2022-01销售额)/2022-01销售额,那么怎么获取2022-01销售额呢?这里采用的方式是join,所以就需要让上一个月和本月的日期一样,就是让2022-01变成2022-02,然后进行join即可。
spark.sql(
s"""
|select
|shop_id,
|date_format(add_months(event_day,1),'yyyy-MM') event_day,
|sum(amount) amount
|from t1 group by shop_id,date_format(add_months(event_day,1),'yyyy-MM')
|order by shop_id,date_format(add_months(event_day,1),'yyyy-MM')
|""".stripMargin).createOrReplaceTempView("t3")
输出
+-------+---------+------+
|shop_id|event_day|amount|
+-------+---------+------+
| 1| 2022-02| 30|
| 1| 2022-03| 10|
| 1| 2022-04| 30|
| 1| 2022-06| 10|
| 1| 2022-07| 20|
| 1| 2023-02| 30|
| 1| 2023-03| 10|
| 1| 2023-04| 30|
| 1| 2023-06| 10|
| 1| 2023-07| 20|
| 11| 2022-02| 30|
| 11| 2022-03| 10|
| 11| 2022-04| 30|
| 11| 2022-06| 20|
| 11| 2022-07| 30|
| 11| 2023-02| 40|
| 11| 2023-03| 10|
| 11| 2023-04| 20|
| 11| 2023-06| 10|
| 11| 2023-07| 30|
+-------+---------+------+
3.3将本月和上个月的进行join
对于没有上个月的情况,输出为null,代表无意义,也可以将null转为其他值,依据具体需求而定。
spark.sql(
s"""
|select
|shop_id,
|a_event_day,
|round((a_amount-b_amount)/b_amount,4) huanbi
|from
|(
|select
|t2.shop_id,
|t2.event_day a_event_day,
|t3.event_day b_event_day,
|t2.amount a_amount,
|t3.amount b_amount
|from t2 left join t3
|on t2.shop_id=t3.shop_id and t2.event_day=t3.event_day
|) order by shop_id,a_event_day
|""".stripMargin).show()
输出
+-------+-----------+-------+
|shop_id|a_event_day| huanbi|
+-------+-----------+-------+
| 1| 2022-01| null|
| 1| 2022-02|-0.6667|
| 1| 2022-03| 2.0|
| 1| 2022-05| null|
| 1| 2022-06| 1.0|
| 1| 2023-01| null|
| 1| 2023-02|-0.6667|
| 1| 2023-03| 2.0|
| 1| 2023-05| null|
| 1| 2023-06| 1.0|
| 11| 2022-01| null|
| 11| 2022-02|-0.6667|
| 11| 2022-03| 2.0|
| 11| 2022-05| null|
| 11| 2022-06| 0.5|
| 11| 2023-01| null|
| 11| 2023-02| -0.75|
| 11| 2023-03| 1.0|
| 11| 2023-05| null|
| 11| 2023-06| 2.0|
+-------+-----------+-------+
有些人会想到用快窗函数,然后使用lead或者lag获取上一行或者下一行,但是这总方式是有问题的,如果月份不连续,那么计算的就是错误的。
4 月同比
今年1月和去年1月进行比较。逻辑和环比一样只是12个月,不是1个月。
spark.sql(
s"""
|select
|shop_id,
|date_format(add_months(event_day,12),'yyyy-MM') event_day,
|sum(amount) amount
|from t1 group by shop_id,date_format(add_months(event_day,12),'yyyy-MM')
|order by shop_id,date_format(add_months(event_day,1),'yyyy-MM')
|""".stripMargin).createOrReplaceTempView("t3")
spark.sql(
s"""
|select
|shop_id,
|a_event_day,
|round((a_amount-b_amount)/b_amount,4) tongbi
|from
|(
|select
|t2.shop_id,
|t2.event_day a_event_day,
|t3.event_day b_event_day,
|t2.amount a_amount,
|t3.amount b_amount
|from t2 left join t3
|on t2.shop_id=t3.shop_id and t2.event_day=t3.event_day
|) order by shop_id,a_event_day
|""".stripMargin).show()
输出
+-------+-----------+-------+
|shop_id|a_event_day| tongbi|
+-------+-----------+-------+
| 1| 2022-01| null|
| 1| 2022-02| null|
| 1| 2022-03| null|
| 1| 2022-05| null|
| 1| 2022-06| null|
| 1| 2023-01| 0.0|
| 1| 2023-02| 0.0|
| 1| 2023-03| 0.0|
| 1| 2023-05| 0.0|
| 1| 2023-06| 0.0|
| 11| 2022-01| null|
| 11| 2022-02| null|
| 11| 2022-03| null|
| 11| 2022-05| null|
| 11| 2022-06| null|
| 11| 2023-01| 0.3333|
| 11| 2023-02| 0.0|
| 11| 2023-03|-0.3333|
| 11| 2023-05| -0.5|
| 11| 2023-06| 0.0|
+-------+-----------+-------+